中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机理模型与数据模型融合的污水处理智能控制系统构建思路

殷逢俊 徐泽宇 刘鸿

殷逢俊, 徐泽宇, 刘鸿. 基于机理模型与数据模型融合的污水处理智能控制系统构建思路[J]. 环境工程, 2022, 40(6): 138-144. doi: 10.13205/j.hjgc.202206018
引用本文: 殷逢俊, 徐泽宇, 刘鸿. 基于机理模型与数据模型融合的污水处理智能控制系统构建思路[J]. 环境工程, 2022, 40(6): 138-144. doi: 10.13205/j.hjgc.202206018
YIN Fengjun, XU Zeyu, LIU Hong. THINKING ON CONSTRUCTING AN INTELLIGENT CONTROL SCHEME OF WASTEWATER TREATMENT BASED ON THE COMBINATION OF MECHANISM AND DATA-DRIVEN MODELS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 138-144. doi: 10.13205/j.hjgc.202206018
Citation: YIN Fengjun, XU Zeyu, LIU Hong. THINKING ON CONSTRUCTING AN INTELLIGENT CONTROL SCHEME OF WASTEWATER TREATMENT BASED ON THE COMBINATION OF MECHANISM AND DATA-DRIVEN MODELS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 138-144. doi: 10.13205/j.hjgc.202206018

基于机理模型与数据模型融合的污水处理智能控制系统构建思路

doi: 10.13205/j.hjgc.202206018
基金项目: 

国家自然科学基金(52131003,52170059)

中国科学院科研仪器设备研制项目(YJKYYQ20200044)

详细信息
    作者简介:

    殷逢俊(1987-),男,博士,副研究员,主要研究方向为水污染控制。yinfengjun@cigit.ac.cn

    通讯作者:

    刘鸿(1970-),男,博士,研究员,主要研究方向为水污染控制。liuhong@cigit.ac.cn

THINKING ON CONSTRUCTING AN INTELLIGENT CONTROL SCHEME OF WASTEWATER TREATMENT BASED ON THE COMBINATION OF MECHANISM AND DATA-DRIVEN MODELS

  • 摘要: 污水处理智能控制是水污染控制领域的前沿方向。人工智能技术的快速发展,为污水处理智能化控制系统研发注入了新的活力。当前亟须探索污水处理机理模型与数据驱动方法交叉融通的科学路径,重构污水处理智能控制系统的逻辑模式,以提升污水处理智能控制技术研发水平。为此,从污水处理过程的确定性-随机性特征出发,提出了融合机理模型与数据模型的双回路控制系统设想,未来通过充分的实践探索,有望为污水处理智能控制提供新的技术路线。首先,分析了污水处理智能控制系统的基本要素,分别探讨了基于确定性的机理模型及基于随机性的数据驱动模型对污水处理系统的控制作用,进而提出了机理模型与数据模型融合驱动的双回路控制系统基本逻辑架构及控制原理,并分析了该系统在污水处理复杂过程中应用的拓扑结构。最后,围绕未来污水处理智能控制技术发展作了展望。
  • [1] WAHAB N A, KATEBI R, BALDERUD J. Multivariable PID control design for activated sludge process with nitrification and denitrification[J]. Biochemical Engineering Journal, 2009, 45(3):239-248.
    [2] HARJA G, NASCU I, MURESAN C, et al. Improvements in dissolved oxygen control of an activated sludge wastewater treatment process[J]. Circuits Systems and Signal Processing, 2016, 35(6):2259-2281.
    [3] ARISMENDY L, CARDENAS C, GOMEZ D, et al. A prescriptive intelligent system for an industrial wastewater treatment process:analyzing ph as a first approach[J]. Sustainability-Basel, 2021, 13(8):1-14.
    [4] MANESIS S A, SAPIDIS D J, KING R E. Intelligent control of wastewater treatment plants[J]. Artificial Intellgence in Engineering, 1998, 12(3):275-281.
    [5] ALAM M, VIDYARATNE L, IFTEKHARUDDIN K M. Novel deep generative simultaneous recurrent model for efficient representation learning[J]. Neural Networks, 2018, 107:12-22.
    [6] PANG J W, YANG S S, HE L, et al. Intelligent control/operational strategies in WWTPs through an integrated q-learning algorithm with ASM2d-guided reward[J]. Water, 2019, 11(5):927.
    [7] HAN H G, ZHU S G, QIAO J F, et al. Data-driven intelligent monitoring system for key variables in wastewater treatment process[J]. Chinese Journal of Chemical Engineering, 2018, 26(10):2093-2101.
    [8] ZHU S G, HAN H G, GUO M, et al. A data-derived soft-sensor method for monitoring effluent total phosphorus[J]. Chinese Journal of Chemical Engineering, 2017, 25(12):1791-1797.
    [9] QIAO J F, HU Z Q, LI W J. Soft measurement modeling based on chaos theory for biochemical oxygen demand (BOD)[J]. Water, 2016, 8(12):581.
    [10] 杜胜利,张庆达,曹博琦,等.城市污水处理过程模型预测控制研究综述[J].信息与控制,2022,51(1):41-53.
    [11] XIE W M, ZHANG R, LI W W, et al. Simulation and optimization of a full-scale Carrousel oxidation ditch plant for municipal wastewater treatment[J]. Biochemical Engineering Journal, 2011, 56(1/2):9-16.
    [12] FANG F, NI B J, LI W W, et al. A simulation-based integrated approach to optimize the biological nutrient removal process in a full-scale wastewater treatment plant[J]. Chemical Engineering Journal, 2011, 174(2/3):635-643.
    [13] NI B J, YU H Q, SUN Y J. Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules[J]. Water Research, 2008, 42(6/7):1583-1594.
    [14] PAN Y T, NI B J, LIU Y W, et al. Modeling of the interaction among aerobic ammonium-oxidizing archaea/bacteria and anaerobic ammonium-oxidizing bacteria[J]. Chemical Engineering Science, 2016, 150:35-40.
    [15] LEI L, NI J R. Three-dimensional three-phase model for simulation of hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification in an oxidation ditch[J]. Water Research, 2014, 53:200-214.
    [16] NI B J, XIE W M, LIU S G, et al. Modeling and simulation of the sequencing batch reactor at a full-scale municipal wastewater treatment plant[J]. Aiche Journal, 2009, 55(8):2186-2196.
    [17] SUN S C, BAO Z Y, LI R Y, et al. Reduction and prediction of N2O emission from an anoxic/oxic wastewater treatment plant upon DO control and model simulation[J]. Bioresource Technology, 2017, 244:800-809.
    [18] RAHMATI M G, TISHEHZAN P, MOAZED H. Determining the best and simple intelligent models for evaluating BOD5 of Ahvaz wastewater treatment plant[J]. Desalination and Water Treatment, 2021, 209:242-253.
    [19] LIU Y, TUO A X, JIN X J, et al. Quantifying biodegradable organic matter in polluted water on the basis of coulombic yield[J]. Talanta, 2018, 176:485-491.
    [20] JIANG Y, YANG X F, LIANG P, et al. Microbial fuel cell sensors for water quality early warning systems:fundamentals, signal resolution, optimization and future challenges[J]. Renew Sust Energ Rev, 2018, 81:292-305.
  • 加载中
计量
  • 文章访问数:  241
  • HTML全文浏览量:  20
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回