基于纳米压痕技术的页岩土MICP结石体微观力学特性研究
作者:
作者单位:

作者简介:

刘子健(1995—),男,硕士研究生。主要从事微生物岩土工程方面的研究。E-mail:lzjkyzh@126.com

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(41672290,41972276)、福建省自然科学基金项目(2020J06013)资助


Investigation on the Micromechanical Properties of Bio-cement Shale Soil based on the Nanoindentation Technique
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前对于微生物诱导碳酸盐沉淀技术(MICP)土体加固技术的研究大多数集中在宏观力学性能上,对微观力学特性的研究较少。为了探究页岩土 MICP 结石体的微观力学特性,在不同峰值荷载下对页岩土 MICP 结石体进行纳米压痕测试,并基于能量法中弹性参数计算模型及塑性断裂力学理论计算页岩土 MICP 结石体中胶结体区域及土颗粒区域的硬度、弹性模量和断裂韧度。结合激光显微镜及 X 射线衍射试验,探讨测点处碳酸钙胶结体状态及矿物组分对页岩土 MICP 结石体各相材料微观力学特性的影响,建立页岩土 MICP 结石体弹性模量、硬度及断裂韧度三者之间的线性关系。结果表明,利用纳米压痕技术测试页岩土 MICP 结石体材料的弹性模量、硬度及断裂韧度具备可行性。由于 MICP 技术诱导生成的方解石晶体质地不均匀,导致页岩土 MICP 结石体中胶结体的弹性模量、硬度及断裂韧度存在较大离散性。矿物组分中石英矿物的存在能够强化页岩土颗粒的微观力学特性,使部分页岩土颗粒的力学参数提高。各区域的断裂韧度变化趋势与弹性模量、硬度相同,三者之间具有简单线性关系。 纳米压痕技术打破了常规力学试验对试样尺寸的限制,为测定页岩土 MICP 结石体的细观力学参数提供借鉴。

    Abstract:

    In recent years,consolidating soil by the microbially induced carbonate precipitation (MICP)technique has been extensively studied in the civil engineering field. However,most of those studies focus on the macroscopic mechanical properties. Since the macro-mechanical properties are often influenced by micro-mechanical properties,the nanoindentation experiments were conducted on bio-cemented shale soil under different levels of peak load to explore the micro-mechanical properties of bio-cemented shale soil. The elastic modulus,hardness,and fracture toughness of bio-cemented shale soil were obtained based on the calculation model of elastic parameters and plastic fracture mechanics theory. To analyze the influence of the calcium carbonate crystal morphology and distribution of mineral crystals of measuring points on the micro-mechanical properties of calculus,the forms of calcium crystals were observed by using an optical microscope. Besides,the X-ray diffraction test was also conducted on bio-cemented samples to investigate the effect of mineral components in the sample on its mechanical properties. Afterward,the relationship among the elastic modulus,hardness,and fracture toughness of bio-cemented samples was analyzed. The results show that it is feasible to test the elastic modulus,hardness,and fracture toughness of bio-cemented shale soils by using the nanoindentation technique. However,there is discreteness in the values of elastic modulus,hardness,and fracture toughness of bio-cemented shale soil because the texture of calcium carbonate crystal induced by the MICP technique is inhomogeneity. In addition,the quartz in the soil with higher strength strengthens the mechanical properties of shale soils,resulting in the improvement of mechanical parameters of some shale soil particles. Moreover,the trend of fracture toughness in each region is the same as the modulus of elasticity and hardness,and there is a simple linear relationship among them. The nanoindentation technique breaks the limitation of specimen size in conventional mechanical tests. The results provide a reference for determining the micro-mechanical parameters of bio-cemented shale soils.

    参考文献
    相似文献
    引证文献
引用本文

刘子健,黄明,崔明娟,许凯,郭珅,王德发.基于纳米压痕技术的页岩土MICP结石体微观力学特性研究[J].防灾减灾工程学报,2022,(5):1036-1045

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:2022-10-25
  • 出版日期: