Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (3) : 43    https://doi.org/10.1007/s11783-020-1335-9
RESEARCH ARTICLE
Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers
Mariana Valdez-Castillo, Sonia Arriaga()
Environmental Science Department, Institute for Scientific and Technological Research of San Luis Potosi, IPICYT. Camino Presa San José 2055, Lomas 4a Sección, CP 78216, San Luis Potosí, Mexico
 Download: PDF(1728 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

•ZnO/Perlite inactivated 72% of bioaerosols in continuous gas phase.

•TiO2 triggered the highest level of cytotoxicity with 95% dead cells onto Poraver.

•Inactivation mechanism occurred by membrane damage, morphological changes and lysis.

•ZnO/Poraver showed null inactivation of bioaerosols.

•Catalysts losses at the outlet of the photoreactor for all systems were negligible.

Bioaerosols are airborne microorganisms that cause infectious sickness, respiratory and chronic health issues. They have become a latent threat, particularly in indoor environment. Photocatalysis is a promising process to inactivate completely bioaerosols from air. However, in systems treating a continuous air flow, catalysts can be partially lost in the gaseous effluent. To avoid such phenomenon, supporting materials can be used to fix catalysts. In the present work, four photocatalytic systems using Perlite or Poraver glass beads impregnated with ZnO or TiO2 were tested. The inactivation mechanism of bioaerosols and the cytotoxic effect of the catalysts to bioaerosols were studied. The plug flow photocatalytic reactor treated a bioaerosol flow of 460×1 06 cells/m3air with a residence time of 5.7 s. Flow Cytometry (FC) was used to quantify and characterize bioaerosols in terms of dead, injured and live cells. The most efficient system was ZnO/Perlite with 72% inactivation of bioaerosols, maintaining such inactivation during 7.5 h due to the higher water retention capacity of Perlite (2.8 mL/gPerlite) in comparison with Poraver (1.5 mL/gPerlite). However, a global balance showed that TiO2/Poraver system triggered the highest level of cytotoxicity to bioaerosols retained on the support after 96 h with 95% of dead cells. SEM and FC analyses showed that the mechanism of inactivation with ZnO was based on membrane damage, morphological cell changes and cell lysis; whereas only membrane damage and cell lysis were involved with TiO2. Overall, results highlighted that photocatalytic technologies can completely inactivate bioaerosols in indoor environments.

Keywords Immobilized catalysts      Continuous flow      Photocatalysis      Bioaerosols      Cytotoxicity      Inactivation mechanism     
Corresponding Author(s): Sonia Arriaga   
Issue Date: 17 December 2020
 Cite this article:   
Mariana Valdez-Castillo,Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1335-9
https://academic.hep.com.cn/fese/EN/Y2021/V15/I3/43
Property ZnO/Perlite ZnO/Poraver TiO2/Perlite TiO2/Poraver
Morphology Crystal packing Crystal packing with forming of agglomerates Crystal packing Crystal packing
BET area (m2/g) 15.60 10.00
Isotherm type IV IV
Hysteresis loop H3 H3
Impregnation Degree (gcatalyst/gcarrier) 0.129 0.050 0.343 0.041
Water retention capacity (mLH2O/gcarrier) 2.79 1.51 2.89 1.58
Apparent density (g/mL) 0.15 0.16 0.15 0.16
Tab.1  Physicochemical characteristics of the impregnated materials used in the photocatalytic processes
Fig.1  Scanning electron micrographs of Perlite carrier and catalysts. A) Morphological structure of Perlite; B) Perlite exposed to bioaerosols; C) ZnO/Perlite; D) TiO2/Perlite.
Fig.2  Scanning electron micrographs of Poraver carrier and catalysts. A) Morphological structure of Poraver; B) Poraver exposed to bioaerosols; C) ZnO/Poraver; D) TiO2/ Poraver.
Photocatalytic system Ti concentration (µg/L) Zn concentration, (mg/L)
TiO2/Perlite TiO2/Poraver ZnO/Perlite ZnO/Poraver
*Average concentration in impinger sample 0.36±0.144 3.67±0.28 0.083±0.008 0.0225±0.005
**% catalysts losses 0.0003±0.0001 0.0028±0.0002 0.0522±0.0044 0.0132±0.0029
Tab.2  Percentage of catalysts losses at the outlet of the photoreactor during the photocatalytic treatment of bioaerosols
Fig.3  Photocatalytic inactivation of bioaerosols with ZnO and TiO2 impregnated onto Perlite (A) and Poraver (B) carriers. Flow cytometry analysis was used to quantify bioaerosols.
Fig.4  Global distribution of bioaerosols in terms of total cells in the inlet, outlet and on the carrier during the total time of photocatalysis for the four systems. ■ Live cells, ■ dead cells, ■ injured cells and ■ total bioaerosol (cells).
Fig.5  Scanning electron micrographs of Perlite with catalysts. A) ZnO/Perlite after sorption equilibrium phase; B) TiO2/Perlite after sorption equilibrium phase C) ZnO/Perlite after 96 h of photocatalysis; D) TiO2/Perlite after 96 h of photocatalysis.
Fig.6  Scanning electron micrographs of Poraver with catalysts. A) ZnO/Poraver after sorption equilibrium phase; B) TiO2/ Poraver after sorption equilibrium phase C) ZnO/ Poraver after 96 h of photocatalysis; D) TiO2/ Poraver after 96 h of photocatalysis.
Fig.7  Mechanisms of inactivation of bioaerosols with photocatalytic systems based on ZnO and TiO2 over Perlite and Poraver carriers.
1 J Álvarez-Hornos, C Gabaldón, V Martínez-Soria, P Marzal, J M Penya-roja, F Sempere (2007). Biofiltration of ethyl acetate under continuos and intermittent loading. Environmental Progress & Sustainable Energy, 26(4): 327–337
2 R Anicua, G M de Carmen (2009). Particule size and micromorphological relation on physical properties of perlite and zeolite. Agricultura Técnica en México, 35(2): 147–156
3 A Baysal, H Saygin, G S Ustabasi (2018). Interaction of PM2.5 airborne particulates with ZnO and TiO2 nanoparticles and their effect on bacteria. Environmental Monitoring and Assessment, 190(1): 34–49
https://doi.org/10.1007/s10661-017-6408-2
4 Y Boyjoo, H Sun, J Liu, V K Pareek, S Wang (2017). A review on photocatalysis for air treatment: From catalyst development to reactor design. Chemical Engineering Journal, 310(2): 537–559
https://doi.org/10.1016/j.cej.2016.06.090
5 C Cárdenas, J I Tobón, C García, J Vila (2012). Functionalized building materials: Photocatalytic abatement of NOx by cement pastes blended with TiO2 nanoparticles. Construction & Building Materials, 36: 820–825
https://doi.org/10.1016/j.conbuildmat.2012.06.017
6 K Cendrowski, M Peruzynska, A Markowska-Szczupak, X Chen, A Wajda, J Lapczuk, M Kurzawski, R J Kalenczuk, M Drozdzik, E Mijowska (2013). Mesoporous silica nanospheres functionalized by TiO2 as a photoactive antibacterial agent. Journal of Nanomedicine & Nanotechnology, 4(6): 1–6
https://doi.org/10.4172/2157-7439.1000182
7 P Chuaybamroong, R Chotigawin, S Supothina, P Sribenjalux, S Larpkiattaworn, C Y Wu (2010). Efficacy of photocatalytic HEPA filter on microorganism removal. Indoor Air, 20(3): 246–254
https://doi.org/10.1111/j.1600-0668.2010.00651.x
8 S Esquivel-Gonzalez, A Aizpuru, A Patrón-Soberano, S Arriaga (2017). Characterization of bioaerosol emissions from two biofilters during treatment of toluene vapours using epifluorescence microscopy. International Biodeterioration & Biodegradation, 123: 78–86
https://doi.org/10.1016/j.ibiod.2017.06.007
9 T García-Pérez, A Aizpuru, S Arriaga (2013). By-passing acidification limitations during the biofiltration of high formaldehyde loads via the application of ozone pulses. Journal of Hazardous Materials, 262: 732–740
https://doi.org/10.1016/j.jhazmat.2013.09.053
10 M Hinojosa-Reyes, S Arriaga, L A Diaz-Torres, V Rodríguez-González (2013). Gas-phase photocatalytic decomposition of ethylbenzene over perlite granules coated with indium doped TiO2. Chemical Engineering Journal, 224: 106–113
https://doi.org/10.1016/j.cej.2013.01.066
11 S N Hosseini, S M Borghei, M Vossoughi, N Taghavinia (2007). Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Applied Catalysis B: Environmental, 74(1–2): 53–62
https://doi.org/10.1016/j.apcatb.2006.12.015
12 C Humbal, S Gautam, U Trivedi (2018). A review on recent progress in observations, and health effects of bioaerosols. Environment International, 118: 189–193
https://doi.org/10.1016/j.envint.2018.05.053
13 R Kumar, A Umar, G Kumar, H S Nalwa (2017). Antimicrobial properties of ZnO nanomaterials: A review. Ceramics International, 43(5): 3940–3961
https://doi.org/10.1016/j.ceramint.2016.12.062
14 K M Lee, C W Lai, K S Ngai, J C Juan (2016). Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Research, 88: 428–448
https://doi.org/10.1016/j.watres.2015.09.045
15 Y Li, W Zhang, J Niu, Y Chen (2012). Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 6(6): 5164–5173
https://doi.org/10.1021/nn300934k
16 S R Lingampalli, M M Ayyub, C N R Rao (2017). Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega, 2(6): 2740–2748
https://doi.org/10.1021/acsomega.7b00721
17 R Muñoz, S Arriaga, S Hernández, B Guieysse, S Revah (2006). Enhanced hexane biodegradation in a two phase partitioning bioreactor: Overcoming pollutant transport limitations. Process Biochemistry, 41(7): 1614–1619
https://doi.org/10.1016/j.procbio.2006.03.007
18 S Niazi, M S Hassanvand, A H Mahvi, R Nabizadeh, M Alimohammadi, S Nabavi, S Faridi, A Dehghani, M Hoseini, M Moradi-Joo, A Mokamel, H Kashani, N Yarali, M Yunesian (2015). Assessment of bioaerosol contamination (bacteria and fungi) in the largest urban wastewater treatment plant in the Middle East. Environmental Science and Pollution Research International, 22(20): 16014–16021
https://doi.org/10.1007/s11356-015-4793-z
19 C B Ong, L Y Ng, A W Mohammad (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable & Sustainable Energy Reviews, 81: 536–551
https://doi.org/10.1016/j.rser.2017.08.020
20 H A M Pagalilauan, C E M Paraoan, P G Vital (2018). Detection of pathogenic bioaerosols and occupational risk in a Philippine landfill site. Archives of Environmental & Occupational Health, 73(2): 107–114
https://doi.org/10.1080/19338244.2017.1299087
21 L Pinho, M J Mosquera (2013). Photocatalytic activity of TiO2-SiO2 nanocomposites applied to buildings: Influence of particle size and loading. Applied Catalysis B: Environmental, 134–135: 205–221
https://doi.org/10.1016/j.apcatb.2013.01.021
22 C Rodrigues-Silva, S M Miranda, F V S Lopes, M Silva, M Dezotti, A M T Silva, J L Faria, R A R Boaventura, V J P Vilar, E Pinto (2017). Bacteria and fungi inactivation by photocatalysis under UVA irradiation: liquid and gas phase. Environmental Science and Pollution Research International, 24(7): 6372–6381
https://doi.org/10.1007/s11356-016-7137-8
23 B Sánchez, M Sánchez-Muñoz, M Muñoz-Vicente, G Cobas, R Portela, S Suárez, A E Gonzalez, N Rodriguez, R Amils (2012). Photocatalytic elimination of indoor air biological and chemical pollution in realistic conditions. Chemosphere, 87(6): 625–630
https://doi.org/10.1016/j.chemosphere.2012.01.050
24 J O Saucedo-Lucero, S Arriaga (2013). Photocatalytic degradation of hexane vapors in batch and continuous systems using impregnated ZnO nanoparticles. Chemical Engineering Journal, 218: 358–367
https://doi.org/10.1016/j.cej.2012.12.050
25 J O Saucedo-Lucero, G Quijano, S Arriaga, R Muñoz (2014). Hexane abatement and spore emission control in a fungal biofilter-photoreactor hybrid unit. Journal of Hazardous Materials, 276: 287–294
https://doi.org/10.1016/j.jhazmat.2014.05.040
26 K S W Sing, D H Everett, R A W Haul, L Moscou, R S Pierotti, J Rouquerol, T Siemieniewsky (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57(4): 603–619
https://doi.org/10.1351/pac198557040603
27 M Valdez-Castillo, J O Saucedo-Lucero, S Arriaga (2019). Photocatalytic inactivation of airborne microorganisms in continuous flow using perlite-supported ZnO and TiO2. Chemical Engineering Journal, 374: 914–923
https://doi.org/10.1016/j.cej.2019.05.231
28 C Wang, J Y Xi, H Y Hu (2009). Reduction of toxic products and bioaerosol emission of a combined ultraviolet-biofilter process for chlorobenzene treatment. Journal of the Air & Waste Management Association, 59(4): 405–410
https://doi.org/10.3155/1047-3289.59.4.405
29 WHO (2020). WHO Characterizes Coronavirus Disease (COVID-19) as a pandemic. Geneva: World Health Organization
30 B Wu, Y Wang, Y H Lee, A Horst, Z Wang, D R Chen, R Sureshkumar , Y J. Tang (2010). Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environmental Science & Technology, 44(4): 1484–1489
https://doi.org/10.1021/es9030497
31 F Wu, S Zhao, B Yu, Y M Chen, W Wang, Z G Song, Y Hu, Z Tao, J Tian, Y Pei, M Yuan, Y Zhang, F Dai, Y Liu, Q Wang, J Zheng, L Xu, E C Holmes, Y Zhang (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798): 265–269
https://doi.org/10.1038/s41586-020-2008-3
32 Y Xie, Y He, P L Irwin, T Jin, X Shi (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology, 77(7): 2325–2331
https://doi.org/10.1128/AEM.02149-10
33 L Zhong, F Haghighat (2015). Photocatalytic air cleaners and materials technologies: Abilities and limitations. Building and Environment, 91: 191–203
https://doi.org/10.1016/j.buildenv.2015.01.033
[1] FSE-20157-OF-VCM_suppl_1 Download
[1] Shuangyang Zhao, Chengxin Chen, Jie Ding, Shanshan Yang, Yani Zang, Nanqi Ren. One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B[J]. Front. Environ. Sci. Eng., 2022, 16(3): 36-.
[2] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[3] Wenwen Xie, Yanpeng Li, Wenyan Bai, Junli Hou, Tianfeng Ma, Xuelin Zeng, Liyuan Zhang, Taicheng An. The source and transport of bioaerosols in the air: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 44-.
[4] Pil Uthaug Rasmussen, Katrine Uhrbrand, Mette Damkjær Bartels, Helle Neustrup, Dorina Gabriela Karottki, Ute Bültmann, Anne Mette Madsen. Occupational risk of exposure to methicillin-resistant Staphylococcus aureus (MRSA) and the quality of infection hygiene in nursing homes[J]. Front. Environ. Sci. Eng., 2021, 15(3): 41-.
[5] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[6] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[7] Christian GEORGE, Anne BEELDENS, Fotios BARMPAS, Jean-François DOUSSIN, Giuseppe MANGANELLI, Hartmut HERRMANN, Jörg KLEFFMANN, Abdelwahid MELLOUKI. Impact of photocatalytic remediation of pollutants on urban air quality[J]. Front. Environ. Sci. Eng., 2016, 10(5): 2-.
[8] Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU. Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation[J]. Front. Environ. Sci. Eng., 2016, 10(2): 211-218.
[9] Xi CHEN,Linjiang YUAN,Wenjuan LU,Yuyou LI,Pei LIU,Kun NIE. Cultivation of aerobic granular sludge in a conventional, continuous flow, completely mixed activated sludge system[J]. Front. Environ. Sci. Eng., 2015, 9(2): 324-333.
[10] Gholamreza GHASEMZADEH,Mahdiye MOMENPOUR,Fakhriye OMIDI,Mohammad R. HOSSEINI,Monireh AHANI,Abolfazl BARZEGARI. Applications of nanomaterials in water treatment and environmental remediation[J]. Front.Environ.Sci.Eng., 2014, 8(4): 471-482.
[11] Lei LI, Jian XU, Changsheng GUO, Yuan ZHANG. Removal of rhodamine B from aqueous solution by BiPO4 hierarchical architecture[J]. Front Envir Sci Eng, 2013, 7(3): 382-387.
[12] Yongming ZHANG, Rong YAN, Zhen ZOU, Jiewei WANG, Bruce E. RITTMANN. Improved nitrogen removal in dual-contaminated surface water by photocatalysis[J]. Front Envir Sci Eng, 2012, 6(3): 428-436.
[13] YiangChen CHOU, Young KU. Selective reduction of NO by photo-SCR with ammonia in an annular fixed-film photoreactor[J]. Front Envir Sci Eng, 2012, 6(2): 149-155.
[14] Huilong WANG, Shuqin LIU, Hui WANG, Wenfeng JIANG, . Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO 2 composites[J]. Front.Environ.Sci.Eng., 2010, 4(3): 311-320.
[15] Chao QIN, Shaogui YANG, Cheng SUN, Jia ZHOU, Manjun ZHAN, Rongjun WANG, Huanxing CAI, . Investigation of the effects of humic acid and H 2 O 2 on the photocatalytic degradation of atrazine assisted by microwave[J]. Front.Environ.Sci.Eng., 2010, 4(3): 321-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed