装备通用质量特性及寿命评估

多轴载荷下结构细节疲劳强度额定值确定方法

王晓玮',尚德广',熊健'

(北京工业大学 机电学院,北京,100124)

摘要:目的 提出一种在多轴载荷下确定结构细节疲劳强度额定值的方法。方法 基于单轴双点法细节疲劳 强度额定值(DFR)确定方法,在多轴载荷下,首先利用高周多轴疲劳损伤模型求出其等效应力幅(等效拉 伸应力幅或等效剪应力幅),结合 Goodman 方程,把等效应力幅转换为应力比 R=0.06 时的最大正应力,最 终确定多轴条件下的细节疲劳强度额定值。通过 7075-T651 铝合金薄壁管进行单轴疲劳试验,确定单轴细节 疲劳强度额定值,并进行多轴疲劳试验,包括比例加载和非比例加载。结果 采用该方法预测多轴载荷下的 DFR 值,对比单轴试验的 DFR 值,相对误差的绝对值在 10%左右。结论 该方法确定多轴条件下的结构细 节疲劳强度额定值具有较好的效果。

关键词:细节疲劳强度额定值;双点法;多轴疲劳试验;多轴高周疲劳

DOI: 10.7643/ issn.1672-9242.2018.03.019

中图分类号: TJ02 文献标识码: A

文章编号: 1672-9242(2018)03-0092-06

Determination of Detail Fatigue Rating of structure under Multiaxial Loading

WANG Xiao-wei¹, SHANG De-guang¹, XIONG Jian¹ (College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China)

ABSTRACT: Objective To propose a method for determining Detail Fatigue Rating (DFR) of structure under multiaxial loading. Methods Based on the two-point method for uniaxial loading (DFR), the high-cycle multiaxial fatigue test model was adopted to obtain equivalent stress (equivalent tensile stress or equivalent shearing strength). The equivalent stress was transferred to the equivalent tension stress under R=0.06 through the Goodman equation, to determine the detail fatigue rating under multiaxial loading. The equivalent stress was determined by employing a multiaxial high-cycle fatigue model. According to the uniaxial fatigue tests for 7075-T651 aluminum alloy under R=0.06, the DFR for uniaxial loading was determined. Then, the multiaxial fatigue tests were conducted, including the proportional and non-proportional loadings. Results From the comparisons between the predicted DFR for multiaxial loading and the experimental DFR for uniaxial loading, the absolute value of the relative errors was about 10%. Conclusion The proposed method, for the determination of the DFR under multiaxial, has a good predictive capability.

KEY WORDS: detail fatigue rating; two-point method; multiaxial fatigue test; multiaxial high-cycle fatigue

疲劳失效是飞机零部件失效的主要形式,因此疲劳强度设计也成为了现代飞机设计中不可或缺的重

要环节。结构件细节疲劳强度额定值(DFR)是指在 应力比 *R*=0.06,置信度为 95%,可靠度为 95%的要

通讯作者:尚德广(1962—),男,博士,教授,主要从事机械结构耐久性设计、多轴疲劳强度、有限元研究。

收稿日期: 2018-01-15;修订日期: 2018-02-07

基金项目: 国家自然科学基金(11272019,51535001,11572008)

作者简介:王晓玮(1988—),女,河北人,博士研究生,主要从事高周多轴疲劳、高温疲劳方面的研究。

求下,结构能承受 10⁵次循环所对应的最大名义应力 值(疲劳强度),也就是说,DFR 值是结构满足上述 条件的条件疲劳强度,是材料本身固有的疲劳特性特 征值。DFR 法不仅设计简单,还兼顾了可靠性和置信 度要求,是较好的疲劳寿命预测方法之一。因而,该 方法在航空结构疲劳强度与耐久性设计中得到广泛 应用。

关于 DFR 法的理论和应用已有一定的研究^[1-5]。由 于 DFR 法是在单轴条件下提出的,相关研究主要集中 在单轴疲劳领域。在多轴载荷下,DFR 方法的研究比 较少。由于结构件形状、受力形式等的影响,实际服役 中结构件受力往往是多轴的,因此研究多轴加载条件下 的 DFR 值确定方法具有重要的工程应用价值。

DFR 值确定方法有双点法、单点法等,双点法对 DFR 值估算更加准确。文中在单轴双点法 DFR 值确 定方法的基础上,提出了多轴载荷下 DFR 值的确定 方法。该方法可将现有的高周多轴模型应用于确定多 轴载荷下的 DFR 值。最后采用铝合金 7075-T651 薄 壁管件进行了单轴拉伸和拉-扭多轴疲劳试验,结合 高周多轴疲劳模型,利用该方法预测多轴 DFR 值, 并与单轴的 DFR 试验值进行了比较。

1 多轴 DFR 确定方法

1.1 基于双点法的单轴 DFR 确定方法

双点法要求在应力比为 R=0.06 的条件下,分别 在 $N=10^4 \sim 10^5$ 周寿命区间确定一个应力水平 σ_1 ,测定 一组寿命数据;在 $N \rightarrow 10^5 \sim 10^6$ 周寿命区间确定一个 应力水平 σ_2 ,测定一组寿命数据。通过如下步骤确定 结构件的 DFR 值:

1) 对两个应力水平 σ_1 和 σ_2 的两组试验寿命数据 分别根据式(1) 求得特征寿命 β_1 和 β_2 :

$$\beta = \left[\frac{1}{n}\sum_{i=1}^{n} N_i^{\alpha}\right]^{1/\alpha} \tag{1}$$

式中: β 为特征寿命; n为同一试验加载条件组 内进行试验的次数; α 为材料常数, 取 $\alpha=4$; N_i 为同 一试验加载条件组内的第 i个试验结果寿命。

 2)根据两组试验数据的特征寿命 β₁、β₂,分别 计算可靠度 *R*=95%,置信度 *C*=95%的寿命 N_{95/95}:

$$N_{95/95} = \frac{\beta}{S_{\rm T} \cdot S_{\rm R} \cdot S_{\rm C}} \tag{2}$$

式中: $N_{95/95}$ 表示可靠度为 95%, 置信度为 95% 的寿命; $S_{\rm T}$ 为试样系数; $S_{\rm R}$ 为可靠度系数; $S_{\rm C}$ 为置 信度系数。

3) σ₁条件下的 N_{95/95} 寿命记为 N₁, σ₂条件下的 N_{95/95} 记为 N₂。在双对数坐标下利用两点拟合一条 S-N 曲线,寿命为 10⁵ 次循环对应的应力水平即为材料的 DFR 值,如图 1 所示。

1.2 提出的多轴 DFR 确定方法

现有的高周多轴疲劳模型往往是将多轴载荷转换为应力比 *R*=-1 的拉伸或者剪切应力幅,而 DFR 值是应力比 *R*=0.06 下的轴向最大正应力值。因此,高周多轴模型不能直接求出多轴条件下的等效 DFR 值。 文中提出通过如下应力转化的方法,基于双点法在多轴加载条件下求出 DFR 值,计算步骤如下。

1) 对试验数据利用选取的多轴高周疲劳模型计 算等效应力幅 S_{eq,a}。若多轴疲劳模型求得的是等效拉 应力幅 σ_{eq,a},则:

$$S_{\rm eq,\,a} = \sigma_{\rm eq,\,a} \tag{3}$$

若多轴疲劳模型求得的是等效剪应力幅 τ_{eq,a},则 需要转换成等效拉应力幅。根据 Mises 理论,转换公 式为:

$$S_{\rm eq, a} = \sqrt{3}\tau_{\rm eq, a} \tag{4}$$

2)利用 Goodman 模型,将 $S_{eq,a}$ 转化为 R=0.06时的最大应力 $\sigma_{eq,0.06}$:

$$\sigma_{\rm eq, 0.06} = \frac{S_{\rm eq, a}}{(0.47 + 0.53 \frac{S_{\rm eq, a}}{\sigma_{\rm u}})}$$
(5)

式中: $\sigma_{\rm u}$ 为材料的拉伸强度。

3)利用 1.1 节所述单轴双点法确定 DFR 值。

2 高周多轴疲劳模型

目前,基于不同的方法,研究者提出大量的多轴 高周疲劳模型^[6-7],主要有基于临界面法模型^[8-13]、基 于应力不变量法模型^[14]和基于细微观法模型^[15-16]等。 临界面的概念是在疲劳裂纹萌生和扩展机理上建立 起来的,具有一定的物理意义。因此,在多轴疲劳研 究中,广泛采用基于临界面法的多轴疲劳模型。文中 利用基于临界面法的模型^[12-13],结合提出的方法,预 测多轴 DFR 值。

2.1 试件应力状态分析

对于光滑薄壁管件,在拉扭复合加载条件下,其 应力状态如图2所示,加载的应力向量为:

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma(t_k) & \tau(t_k) & 0\\ \tau(t_k) & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \sigma_{a} \sin(\omega t_k) + \sigma_{m} & \tau_{a} \sin(\omega t_k - \delta) + \tau_{m}\\ \tau_{a} \sin(\omega t_k - \delta) + \tau_{m} & 0\\ 0 & 0 & 0 \end{bmatrix}$$

式中: t_k 为时间点, k=1, 2, ..., N; σ_a 为加载 的轴向应力幅值, MPa; σ_m 为加载的轴向应力均值, MPa; τ_a 为加载的剪切应力幅值, MPa; τ_m 为加载的 剪切应力均值, MPa。

图 2 试件表面任意表面应力状态

如图 2 所示,对于任意平面 Δ ,其位置可由角度 $\theta 和 \varphi 表示,即 \Delta(\theta,\varphi)。其中, \theta 是平面 <math>\Delta$ 的法向向 量与 z轴所成的角度, φ 是平面 Δ 的法向向量在 x-y面上的投影与 x轴所成的角度。根据斜截面公式,可 以求得平面 Δ 上的剪应力和正应力。

临界面 $\Delta_{c}(\theta_{c},\varphi_{c})$ 是指裂纹萌生所在面,是平面 $\Delta(\theta,\varphi)$ 的特殊情况。在拉扭复合加载下,裂纹在试件 表面萌生,即 $\theta_{c}=\pm90^{\circ}$ 。因此,确定临界面 $\Delta_{c}(\theta_{c},\varphi_{c})$ 的位置就是确定角度 φ_{c} 的值。平面 $\Delta(\theta,\varphi)$ 的应力可简 化为二维应力问题,其应力为:

$$\begin{cases} \sigma_{\varphi} = \frac{\sigma(t_k)}{2} + \frac{\sigma(t_k)}{2} \cos(2\varphi) + \tau(t_k) \sin(2\varphi) \\ \tau_{\varphi} = \frac{\sigma(t_k)}{2} \sin(2\varphi) - \tau(t_k) \cos(2\varphi) \end{cases}$$
(7)

式中: σ_{φ} 为平面 $\Delta(\theta, \varphi)$ 上的正应力; τ_{φ} 为平面 $\Delta(\theta, \varphi)$ 上的剪应力。

根据式(7),可以求得最大绝对剪应力和所在面的角度:

$$\begin{cases} \tau_{\max}(t_k) = \sqrt{\left(\frac{\sigma(t_k)}{2}\right)^2 + \left(\tau(t_k)\right)^2} \\ \varphi_{-45^* - 45^\circ}(t_k) = \frac{1}{2} \arctan\left[-\frac{\sigma(t_k)}{2\tau(t_k)}\right] \\ \varphi_{0^* - 45^\circ}(t_k) = abs\left(\frac{1}{2} \arctan\left[-\frac{\sigma(t_k)}{2\tau(t_k)}\right]\right) \end{cases}$$
(8)

式中 $\tau_{\max}(t_k)$ 为最大绝对剪应力; $\varphi_{-45^{\circ}-45^{\circ}}(t_k)$ 为最大绝对剪应力面的法向向量与 x 轴的夹角,

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (6)

 $-45^{\circ} \le \varphi \le 45^{\circ}$; $\varphi_{0^{\circ} - 45^{\circ}}(t_k)$ 为 $\varphi_{-45^{\circ} - 45^{\circ}}(t_k)$ 的绝对值, $0^{\circ} \le \varphi \le 45^{\circ}$

2.2 确定临界面位置

基于疲劳失效机理,裂纹在最大剪切方向萌生。 在非比例加载条件下,最大剪应力面是随时间变化的。因此,文献[12-13]提出用加权平均的方法求平均 最大绝对剪应力所在面,即临界面可以由权平均最大 绝对剪应力面 $\Delta_{\hat{\rho}}(\theta_{e},\hat{\phi})$ 确定:

$$\begin{cases} \hat{\varphi} = \frac{1}{W_{\text{total}}} \sum_{t_1}^{t_N} \varphi_{0^\circ \sim 45^\circ}(t_k) W(t_k) \\ W_{\text{total}} = \sum_{t_1}^{t_N} W(t_k) \end{cases}$$
(9)

式中: $\hat{\varphi}$ 为平面 $\Delta_{\hat{\varphi}}(\theta_c, \hat{\varphi})$ 的法向向量与 x 轴夹角; W_{total} 为权函数 $W(t_k)$ 从 t_1 到 t_N 时刻的和; $W(t_k)$ 为权 函数,其计算公式为:

$$W(t_{k}) = \frac{\tau_{\max}(t_{k}) - \min\{\tau_{\max}(t_{k})\}}{\max\{\tau_{\max}(t_{k})\} - \min\{\tau_{\max}(t_{k})\}}$$
(10)

式中: max { $\tau_{max}(t_k)$ } 为时间载荷历程中 $\tau_{max}(t_k)$ 的最大值; min { $\tau_{max}(t_k)$ } 为时间载荷历程中 $\tau_{max}(t_k)$ 的最小值。

确定临界面位置 $\Delta_{c}(\theta_{c},\varphi_{c})$ 的具体计算步骤如下所述。

1) 确定参数 $\tau_{\max}(t_k), \ \varphi_{-45^{\circ}-45^{\circ}}(t_k)$ 和 $\varphi_{0^{\circ}-45^{\circ}}(t_k)$ 。

2)确定权平均最大绝对剪应力平面 $\Delta_{\hat{\rho}}(\theta_{c}, \hat{\rho})$ 的 位置,即确定角度 $\hat{\rho}$ 。角度 $\hat{\rho}$ 的值可由式 (9)确定, 其符号可由式 (11)、(12)确定:

$$\hat{\varphi} \ge 0$$
, $\frac{1}{W_{\text{total}}} \sum_{t_1}^{t_N} \varphi_{-45^\circ - 45^\circ}(t_k) W(t_k) \ge 0$ (11)

$$\hat{\varphi} < 0$$
, $\frac{1}{W_{\text{total}}} \sum_{t_1}^{t_N} \varphi_{-45^\circ - 45^\circ}(t_k) W(t_k) < 0$ (12)

3)确定临界面位置。由式(8)可知,平面 $\hat{\phi}$ 和 平面 $\hat{\phi}$ +90°上的平均最大绝对剪应力值相等。因此, 需要计算这两个平面上的累积损伤,两个面中损伤最 大的面即为临界面。

2.3 高周多轴疲劳模型

基于权函数所确定的临界面,本文采用文献[13] 的高周多轴疲劳模型:

$$\tau_{\rm eq} = \sqrt{\left[\tau_{\rm a}(\theta_{\rm c},\varphi_{\rm c}) + \frac{\sqrt{2}-1}{2} \left|\tau_{\rm m}(\theta_{\rm c},\varphi_{\rm c})\right|\right]^2 + \frac{1}{3} \left[\sigma_{\rm a}(\theta_{\rm c},\varphi_{\rm c}) + \left(\sqrt{\frac{24\tau_{-1}^2}{\sigma_{-1}^2} - \frac{9+6\sqrt{2}}{4}} - 1\right)\sigma_{\rm m}(\theta_{\rm c},\varphi_{\rm c})\right]^2}$$
(13)

%

式中: $\tau_a(\theta_c, \varphi_c)$ 为临界面 $\Delta_c(\theta_c, \varphi_c)$ 上的剪应力幅; $\tau_m(\theta_c, \varphi_c)$ 为临界面 $\Delta_c(\theta_c, \varphi_c)$ 上的平均剪应力; $\sigma_a(\theta_c, \varphi_c)$ 为临界面 $\Delta_c(\theta_c, \varphi_c)$ 上的正应力幅; $\sigma_m(\theta_c, \varphi_c)$ 为临界面 $\Delta_c(\theta_c, \varphi_c)$ 上的平均正应力; τ_{-1} 为对称循环下 剪切疲劳极限; σ_{-1} 为对称循环下拉伸疲劳极限。

试验研究表明,平均正拉应力减小疲劳寿命,平均正压应力延长疲劳寿命。为了保证平均正应力的有效影响,该模型适用于满足以下条件的材料:

$$\sqrt{\frac{24\tau_{-1}^2}{\sigma_{-1}^2}} - \frac{9 + 6\sqrt{2}}{4} - 1 \ge 0$$
(14)

3 疲劳试验

3.1 基本试验条件和材料

试验采用电液伺服 MTS858 多轴疲劳试验机, 试验频率为10 Hz。试验材料选择7075-T651 铝合金, 该材料具有高强度、轻质量等特性,是目前在航空 航天领域得到广泛应用的结构材料。该材料的化学 成分和静力学性能分别见表1和表2。材料的拉伸疲 劳极限 σ-1和剪切疲劳极限 τ-1分别为207.06,116.77 MPa。

表 1	7075–T651	铝合金化学成分
衣!	1012-1021	坦口亚化子 风:

Zn	Mg	Cu	Mn	Ti	Cr	Ni	Fe	Si	Al
5.68	2.40	1.63	0.14	0.22	0.18	0.044	0.18	0.06	Bal.

表 2 7075-T651 铝合金室温静力学性能

E/GPa	G/GPa	$\sigma_{0.2}/\mathrm{MPa}$	$S_{\rm u}/{ m MPa}$	$ au_{ m f}/{ m MPa}$	$\tau_{0.2}/\mathrm{MPa}$
71.7	27.5	501	561	379	369

试件形状为薄壁管试件,其中,试验段外壁的直 径为 12.5 mm,内壁的直径为 10.5 mm,试验段的长 度为 30 mm,壁厚为 1 mm。综合考虑试件尺寸和试 验设备的要求,试件的形状和具体尺寸如图 3 所示。

图 3 疲劳试件形状及尺寸

3.2 单轴和多轴疲劳试验

在试验中,疲劳载荷的加载波形设定为正弦波。 试验是由轴向力和扭矩控制。对于薄壁管试件,可以 通过计算求得其轴向应力和试件表面的剪切应力,具体的计算方法为:

$$\begin{cases} \sigma = \frac{4F}{\pi (D^2 - d^2)} \\ \tau = \frac{16M}{\pi D^3 [1 - (\frac{d}{D})^4]} \end{cases}$$
(15)

式中: *F* 为轴向拉力, N; *M* 为扭矩, N·m; *D* 为薄壁管试验段外径, 该试验中 *D*=12.5 mm; *d* 为薄壁管试验段内径, 该试验中 *d*=10.5 mm

单轴疲劳试验是在应力比 *R*=0.06条件下进行的。 试验选取两个应力水平,一个应力水平进行三组试 验,具体试验结果见表 3。

拉-扭多轴疲劳试验的拉伸和扭转应力分量的应力比均为 *R*=0.06,相同的应力水平也进行三次试验。 具体的试验加载参数和试验结果见表 4。

试件编号	$\sigma_{ m max}/ m MPa$	$\sigma_{ m min}/ m MPa$	$ au_{ m max}/ m MPa$	$\tau_{\rm min}/{ m MPa}$	$N_{\rm f}$ /cycles
No.25	390	23.4	0	0	175 509
No.41	390	23.4	0	0	139 329
No.13	390	23.4	0	0	391 636
No.9	432	25.92	0	0	12 159
No.1	432	25.92	0	0	60 576
No.45	432	25.92	0	0	87 622

表 3 单轴试验加载条件及寿命结果

试件编号	$\sigma_{ m max}/ m MPa$	$\sigma_{ m min}/ m MPa$	$\tau_{\rm max}/{ m MPa}$	$ au_{\min}/MPa$	相位角/(°)	N _f /cycles
No.4	276.475	16.588	159.627	9.578	0	270 597
No.97	276.475	16.588	159.627	9.578	0	126 438
No.51	276.475	16.588	159.627	9.578	0	86 909
No.38	307.587	18.455	177.591	10.655	0	79 160
No.129	307.587	18.455	177.591	10.655	0	65 046
No.150	307.587	18.455	177.591	10.655	0	53 058
No.40	293.454	17.607	169.424	10.165	30	974 032
No.124	293.454	17.607	169.424	10.165	30	178 920
No.126	293.454	17.607	169.424	10.165	30	44 410
No.112	325.264	19.516	187.797	11.268	30	37 525
No.119	325.264	19.516	187.797	11.268	30	30 038
No.14	325.264	19.516	187.797	11.268	30	36 299
No.78	276.475	16.588	159.627	9.578	45	133 125
No.67	276.475	16.588	159.627	9.578	45	934 710
No.60	276.475	16.588	159.627	9.578	45	1 527 482
No.79	307.587	18.455	177.591	10.655	45	56 775
No.114	307.587	18.455	177.591	10.655	45	45 452
No.37	307.587	18.455	177.591	10.655	45	167 161
No.31	307.587	18.455	177.591	10.655	90	344 550
No.131	307.587	18.455	177.591	10.655	90	94 718
No.139	307.587	18.455	177.591	10.655	90	70 333
No.24	325.264	19.516	187.797	11.268	90	68 455
No.44	325.264	19.516	187.797	11.268	90	147 180
No.29	325.264	19.516	187.797	11.268	90	51 324

表 4 多轴试验加载条件及寿命结果

4 试验结果分析

DFR 是基于单轴疲劳提出的,但在实际工程中, 服役中的结构件通常都是在多轴应力状态下工作的。 在这种情况下,单轴 DFR 值不能直接应用于工程实 际中。

文中提出通过将多轴应力等效为单轴应力的方法,获得多轴加载下等效的单轴 DFR 值。因此,拉 扭复合加载作用下等效的 DFR 与单轴拉伸作用下的 DFR 应该相同。以单轴试验的 DFR 值为基准,验证 提出的多轴 DFR 确定方法的效果。

在该试验中,式(2)中试样系数 $S_{\rm T}$ 取值为1, 对铝合金材料可靠度系数 $S_{\rm R}$ 取值为2.1,每组试验件 为3根,置信度系数 $S_{\rm C}$ 取值为1.195。采用单轴双点 法,利用试验中两组单轴试验数据,可以计算出单轴 DFR 试验值为 $\sigma_{\rm DFR}$ =395 MPa。

通过多轴条件下预测的等效单轴 DFR 值与单轴 试验得到的 DFR 值对比,分析该方法的预测效果。 预测结果见表 5,其中相对误差 *I* 计算为:

$$I = \frac{\sigma_{\rm eq, \, DFR} - \sigma_{\rm DFR}}{\sigma_{\rm DFR}} \times 100\%$$
(16)

式中: $\sigma_{eq,DFR}$ 为预测的多轴 DFR 值, MPa; σ_{DFR} 为材料的单轴 DFR 值, σ_{DFR} =395 MPa。

表 5 多轴载荷下 DFR 值预测结果

相 位 差//◎)	高周多轴模型	
相匹左()	预测DFR值/MPa	<i>I</i> I%
0	346	-12.1
30	374	-5.3
45	369	-6.6
90	377	-4.6

从表 5 可以看出,利用文中提出的方法,在多轴 条件下预测的 DFR 值相对于单轴 DFR 试验值误差绝 对值基本在 10%左右。从结果可以看出,多轴条件下 利用该方法预测材料的 DFR 值可以取得较好的效果。

5 结论

1)采用 7075-T651 铝合金进行恒幅单轴和多轴 疲劳试验,并通过应力比 *R*=0.06 的单轴疲劳试验, 确定材料的 DFR 值。 2)基于单轴双点法确定 DFR 值的方法,文中提出了一种在多轴载荷条件下,材料 DFR 值确定方法。
 3)结合高周多轴疲劳模型,利用文中提出的方

法可以预测多轴加载条件下 DFR 值。通过预测的多轴 DFR 值和单轴 DFR 试验值对比,结果表明提出的 方法具有较好的预测效果。

参考文献:

- HUANG W, WANG T J, GARBATOV Y, et al. DFR Based Fatigue Reliability Assessment of Riveted Lap Joint Accounting for Correlations[J]. International Journal of Fatigue, 2013, 47: 106-114.
- [2] 鲍蕊,张建宇,郑晓玲,等.DFR 腐蚀影响系数及其试验测定[J].北京航空航天大学学报,2006,32(6):639-644.
- [3] 郑晓玲, 鲍蕊, 费斌军. 综合环境下民机机身典型长桁 接头疲劳分析[J]. 北京航空航天大学学报, 2007, 33(4): 379-382.
- [4] 董彦民,刘文珽,杨超. 军用飞机结构耐久性设计的细节疲劳额定值方法[J]. 航空学报,2010,31(12):2357-2364.
- [5] 董彦民,贺小帆,刘文珽. 基于不同寿命分布的 DFR 值换算关系[J]. 北京航空航天大学, 2011, 37(12): 1525-1528.
- [6] PAPADOPOULOS I V, DAVOLI P, FILIPPINI M, et al. A comparative Study of Multiaxial High-cycle Fatigue Criteria for Metals[J]. International Journal of Fatigue, 1997, 19: 219-235.
- [7] PAPUGA J. A Survey on Evaluating the Fatigue Limit under Multiaxial Loading[J]. International Journal of Fatigue, 2011, 33(2): 153-165.
- [8] CARPINTERI A, SPAGNOLI A, VANTADORI S. Multiaxial Fatigue Assessment Using a Simplified Critical Plane-based Criterion[J]. International Journal of Fatigue,

2011, 33: 969-976.

- [9] CARPINTERI A, RONCHEI C, SPAGNOLI A, et al. Lifetime Estimation in the Low/Medium-cycle Regime Using the Carpinteri-Spagnoli Multiaxial Fatigue Criterion[J]. Theoretical and Applied Fracture Mechanics, 2014, 73: 120-127.
- [10] CARPINTERI A, RONCHEI C, SPAGNOLI A, et al. On the Use of the Prismatic Hull Method in a Critical Plane-based Multiaxial Fatigue Criterion[J]. International Journal of Fatigue, 2014, 68: 159-167.
- [11] SUSMEL L. Multiaxial Fatigue Limits and Material Sensitivity to Non-zero Mean Stresses Normal to the Critical Planes[J]. Fatigue and Fracture of Engineering Materials and Structures, 2008, 31: 295-309.
- [12] WANG X W, SHANG D G. Determination of the Critical Plane by a Weight-function Method Based on the Maximum Shear Stress Plane under Multiaxial High-cycle Loading[J]. International journal of fatigue, 2016, 90: 36-46.
- [13] WANG X W, SHANG D G, CHEN H. Multiaxial High-cycle Fatigue Life Prediction Model Considering Mean Shear Stress Effect under Constant and Variable Amplitude Loading[J]. Theoretical and Applied Fracture Mechanics, 2017, 76: 134-143.
- [14] CRISTOFORI A, SUSMEL L, TOVO R. A Stress Invariant Based Criterion to Estimate Fatigue Damage under Multiaxial Loading[J]. International Journal of Fatigue, 2008, 30: 1646-1658.
- [15] GUERCHAIS R, ROBERT C, MOREL F, et al. Micromechanical Study of the Loading Path Effect in High Cycle Fatigue[J]. International Journal of Fatigue, 2014, 59: 64-75.
- [16] ESLAMI R, RIESCH-OPPERMANN H, KRAFT O. Prediction of Multiaxial High Cycle Fatigue at Small Scales Based on a Micro-mechanical Model[J]. International Journal of Fatigue, 2016, 83: 66-74.