首页 | 官方网站   微博 | 高级检索  
     

贵州石漠化土壤中菲和芘解吸行为的研究
引用本文:李维,安显金.贵州石漠化土壤中菲和芘解吸行为的研究[J].环境工程,2022,40(9):178.
作者姓名:李维  安显金
作者单位:1. 贵阳学院 生物与环境工程学院, 贵阳 550005;
基金项目:贵阳学院科研资金项目[GYU-KY-(2022)]贵州省科技计划项目(黔科合基础([2020]1Y165)贵州省教育厅青年科技人才成长项目(黔教合KY字[2022]001号)
摘    要:为了探明典型多环芳烃(PAHs)在石漠化土壤中的迁移行为,揭示石漠化土壤理化性质对PAHs迁移的影响机制,选取贵州省不同石漠化等级区域的石灰土,采用批解吸法结合Pearson相关系数分析,研究菲和芘在不同溶液中的解吸行为。结果表明:石漠化等级越高,菲和芘的解吸越容易,菲和芘的解吸滞后系数(HI值)分别从无石漠化土壤的0.73和0.46降至重度石漠化土壤的0.54和0.28,菲和芘的非线性指数(N值)分别从无石漠化土壤的0.514和0.557增至重度石漠化土壤的0.606和0.637。解吸动力学研究表明:随着石漠化等级升高,菲和芘的快解吸组分(Frap)含量增加,增幅分别为24.14%和18.14%,快解吸速率(Krap)分别从6.56,1.26 h-1增至8.16,7.98 h-1。土壤有机质含量、孔隙度、比表面积和阳离子交换量是影响贵州石漠化土壤解吸菲和芘的4个主要因子,均与菲和芘的解吸能力呈负相关。不同解吸环境对比实验表明:石漠化土壤的富钙特性是影响菲和芘解吸的重要因素,电解质溶液中Ca2+会促进菲和芘的解吸。在石漠化等级越高的土壤中菲和芘解吸越容易,这与土壤的富钙特性紧密相关。

关 键 词:石漠化    土壤            解吸
收稿时间:2022-05-13

DESORPTION BEHAVIOR OF PHENANTHRENE AND PYRENE IN ROCKY DESERTIFICATION SOIL IN GUIZHOU,CHINA
Affiliation:1. College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China;2. Guizhou Normal University, Guiyang 550001, China;3. National Karst Rock Desert Control Engineering Technology Research Center, Guiyang 550001, China
Abstract:Study of typical polycyclic aromatic hydrocarbons(PAHs) in rocky desertification soil and the physicochemical properties of rocky desertification soil effect on the migration mechanism of PAHs, typical lime soil in the different rocky desertification areas in Guizhou was carried out. Phenanthrene and pyrene were selected as the subjects, and batch desorption method combined with Pearson correlation analysis was used to study the desorption behavior of these two pollutants in different solutions. The results showed that the higher the rocky desertification grades, the easier the desorption of phenanthrene and pyrene, with the desorption hysteresis coefficient(HI) of phenanthrene and pyrene decreased from 0.73 and 0.46 for non-rocky desertification, to 0.54 and 0.28 for strong rocky desertification, respectively. The nonlinear index(N) of phenanthrene and pyrene was increased from 0.514 and 0.557 for non-rocky desertification, to 0.606 and 0.637 for strong rocky desertification, respectively. The results of desorption kinetic showed that as the rocky desertification grade increased, the fast desorption fraction(Frap) of phenanthrene and pyrene was increased and the amplification was 24.14% and 18.14%, respectively; the fast desorption rate(Krap) of phenanthrene and pyrene was increased from 6.56 and 1.26 h-1 to 8.16 and 7.98 h-1, respectively. The four primary parameters affecting the desorption of phenanthrene and pyrene in rocky desertification grades soil in Guizhou province were soil organic matter content, degree of porosity, specific surface area and cation exchange capacity, which were all negatively correlated with the desorption capacity of phenanthrene and pyrene in rocky desertification soil. The abundant calcium in rocky desertification soil was also an essential factor in the effect of phenanthrene and pyrene desorption, and in the electrolyte solution, Ca2+ enhanced the desorption of phenanthrene and pyrene compared to trials under different desorption conditions. The study found that phenanthrene and pyrene desorption were easier in soil with higher rocky desertification grade, which was closely related to the calcium-rich properties of the soil.
Keywords:
点击此处可从《环境工程》浏览原始摘要信息
点击此处可从《环境工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号