首页 | 官方网站   微博 | 高级检索  
     

植物及土壤碳同位素组成对环境变化响应研究进展
引用本文:周咏春,张文博,程希雷,徐新阳.植物及土壤碳同位素组成对环境变化响应研究进展[J].环境科学研究,2019,32(4):565-572.
作者姓名:周咏春  张文博  程希雷  徐新阳
作者单位:东北大学资源与土木工程学院,辽宁 沈阳,110819;辽宁省环境科学研究院,辽宁 沈阳,110031
基金项目:国家自然科学基金项目(No.31400413);教育部基本科研业务费资助项目(No.N130301001);国家留学基金委资助项目(No.201706085003)
摘    要:植物和土壤的δ13C(碳同位素组成)能可靠记录环境信息,综合反映植物的生理生态特征以及碳循环过程中的生物化学过程,为人们理解生态系统碳循环提供有用信息.因此,研究植物和土壤的δ13C与环境因子的关系可以揭示生态系统碳循环的格局及其控制因子,进而有效预测全球变化及其对生态系统的影响.对植物和土壤的δ13C以及二者的差值(Δδ13C)与气候因子(如温度、降水量、大气压强等)、土壤因子(如C/N、土壤质地、土壤pH等)的关系进行了综述.现有研究表明:C3植物的δ13C与降水量、大气压强均呈负相关,与温度的关系非常复杂,而针对C4植物和在群落水平上开展的研究还较少;土壤δ13C与降水量、土壤C/N、土壤w(粉粒)及w(黏粒)均呈负相关,与温度、土壤pH、土壤w(砂粒)均呈正相关,然而环境因素间的耦合作用使得情况复杂化,多种环境因素的匹配关系究竟如何影响土壤δ13C的机制问题仍有待深入研究;Δδ13C能够更加全面准确地反映土壤碳循环信息,但对其与环境因子关系的研究较少,并且影响Δδ13C的驱动因子及机制也不明确.因此,在土壤-植物体系内,同时在物种和群落水平上,进行植物和土壤δ13C特别是Δδ13C与环境因子关系的研究,能够更加准确地预测和揭示环境变化对生态系统碳循环的影响,这也将是今后该领域的研究重点. 

关 键 词:碳同位素组成  气候因子  土壤因子  碳循环
收稿时间:2018/6/11 0:00:00
修稿时间:2018/11/2 0:00:00

A Review on the Responses of Plant and Soil Carbon Stable Isotope Composition to Environmental Change
ZHOU Yongchun,ZHANG Wenbo,CHENG Xilei and XU Xinyang.A Review on the Responses of Plant and Soil Carbon Stable Isotope Composition to Environmental Change[J].Research of Environmental Sciences,2019,32(4):565-572.
Authors:ZHOU Yongchun  ZHANG Wenbo  CHENG Xilei and XU Xinyang
Affiliation:1.School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China2.Liaoning Academy of Environmental Sciences, Shenyang 110031, China
Abstract:Plant and soil carbon stable isotope composition (δ13C) can reliably record environmental information, comprehensively reflect the physio-ecological characteristics of plants and biochemical carbon cycle processes, and provide useful information for understanding ecosystem carbon cycles. Thus, investigating the relationships between plant and soil δ13C and environmental factors can reveal the patterns and controlling factors of ecosystem carbon cycles, and the potential effects of climate change on ecosystems. In this study, the relationships between plant δ13C, soil δ13C and Δδ13C (the differences between plant and soil δ13C) and temperature, precipitation, atmospheric pressure, soil C/N ratio, soil texture and soil pH were reviewed. The δ13C of C3 plant was negatively related to precipitation and atmospheric pressure, while the relationship between temperature and the δ13C of C3 plant was complex. Only limited studies were available on C4 plants, or mixed C3/C4 communities. Soil δ13C was negatively related to precipitation, soil C/N, soil clay and silt content, positively related to temperature, soil pH and soil sand content. However, the coupling effects of environmental factors suggest that the integrated effects of environmental factors on soil δ13C were worth further study. Although Δδ13C could comprehensively reflect this integrated effect, studies on the relationships between Δδ13C and environmental factors were limited, and the control factors of Δδ13C and influencing environmental mechanisms were unclear. Based on the deficiency of existing research, we suggest that measuring plant δ13C at both species and community levels, soil δ13C and Δδ13C simultaneously can more accurately reveal and predict the effects of environmental change on ecosystem carbon cycle, and this should be the focus of future research. 
Keywords:carbon isotope composition  climatic factor  edaphic factor  carbon cycle
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号