首页 | 官方网站   微博 | 高级检索  
     

自然生态系统中厌氧氨氧化和反硝化耦合反应研究进展
引用本文:王宁宁,薛冬梅,王义东,王中良.自然生态系统中厌氧氨氧化和反硝化耦合反应研究进展[J].环境科学研究,2018,31(4):616-627.
作者姓名:王宁宁  薛冬梅  王义东  王中良
作者单位:1.天津师范大学, 天津市水资源与水环境重点实验室, 天津 300387
基金项目:国家自然科学基金项目(No.41203001);天津市高等学校“创新团队培养计划”(No.TD12-5037);天津市自然科学基金项目(No.15JCYBJC49200)
摘    要:厌氧氨氧化和反硝化反应是氮循环系统的两个关键环节,它们对平衡整个生态系统氮的收支、改善水体氮的污染、减少温室气体的排放均具有重要意义.在阐述厌氧氨氧化和反硝化生物反应及微生物学机理的基础上,着重综述了二者在水生和陆地两个生态系统中的耦合反应:①探讨了厌氧氨氧化和反硝化反应在不同环境背景下发生的介质及N2的产生速率和贡献比率,发现水生生态系统中厌氧氨氧化对N2产生的贡献率相对陆地生态系统占有较大比重.②分析了调控厌氧氨氧化和反硝化反应的细菌群落和功能基因,反应系统占主导的微生物种类随环境发生变化,其中厌氧氨氧化菌Candidatus brocadia作为主导细菌出现频率较高.③二者耦合过程中的影响因素包括环境因素与底物因素.其中,环境因素中厌氧氨氧化与反硝化耦合的最适pH为6.7~8.3,且溶解氧含量过高时也会对耦合反应产生抑制作用;在底物环境中,有机物含量或C/N过高会促进反硝化作用,但同时也会抑制厌氧氨氧化的发生.建议以后能够加大对于厌氧氨氧化和反硝化耦合反应全球尺度的研究,特别是对于陆地生态系统,还应加深对厌氧氨氧化反应速率与反硝化反应速率之间关系的理论与应用研究;同时,在实际应用中,需要在确定厌氧氨氧化菌和反硝化菌最佳生长基础上,建立耦合体系理论预测数学模型,量化两类功能性微生物的耦合效果. 

关 键 词:厌氧氨氧化    反硝化    耦合    水生生态系统    陆生生态系统
收稿时间:2017/7/31 0:00:00
修稿时间:2018/2/6 0:00:00

A Review of Anammox-Denitrification Coupling Process in a Natural Ecosystem
WANG Ningning,XUE Dongmei,WANG Yidong and WANG Zhongliang.A Review of Anammox-Denitrification Coupling Process in a Natural Ecosystem[J].Research of Environmental Sciences,2018,31(4):616-627.
Authors:WANG Ningning  XUE Dongmei  WANG Yidong and WANG Zhongliang
Affiliation:1.Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China2.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
Abstract:The coupling process of anaerobic ammonia oxidation (anammox) and denitrification plays an important role in natural ecosystems. As a part of the nitrogen cycle, denitrification and anaerobic ammonia oxidation are critical for balance of nitrogen budget, nitrogen pollution improvement and greenhouse gas reduction. The review focuses on the key issues revolved in the coupling process of anammox and denitrification in both aquatic and terrestrial ecosystems, including (1) Reaction medium, rate and the contribution of N2 in different environmental conditions and the interrelationship. It is found that the contribution of anaerobic ammonia oxidation to N2 production in aquatic ecosystem is greater than that in terrestrial ecosystem. (2) Bacterial community and functional genes of anammox and denitrification that may alter their dominant roles in the changing environment, and Candidatus brocadia having its highest frequency of occurrence. (3) The influencing factors in the coupling process, in which the optimum pH of coupling of anammox and denitrification is 6.7-8.3 in environmental factors, and the coupling reaction will be inhibited when the content of dissolved oxygen is too high. In substrate environment, a great organic content or C/N can promote denitrification, while it inhibits anammox. More attention should be paid to the global scale of the coupling reaction of anammox and denitrification, especially in the terrestrial ecosystems, which is relatively limited to be studied at present. It should also deepen the response to the theoretical and practical study on relationships between the rates of anammox and denitrification. Moreover, in practice, on the basis of determining the optimum growth of anammox bacteria and denitrifying bacteria, and determining the optimum growth of anaerobic ammonia-oxidizing bacteria and denitrifying bacteria, a mathematical model of coupling system theory should be established to quantify the coupling effect of two kinds of functional microorganisms.
Keywords:anammox  denitrification  coupling  aquatic ecosystem  terrestrial ecosystem
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号