首页 | 官方网站   微博 | 高级检索  
     

浸渍热解法制备铁改性生物炭活化过硫酸盐去除2,4-二硝基甲苯
引用本文:曹媛,李晓东,彭昌盛,孙宗全,沈佳伦,马福俊,谷庆宝.浸渍热解法制备铁改性生物炭活化过硫酸盐去除2,4-二硝基甲苯[J].环境工程,2021,39(11):135.
作者姓名:曹媛  李晓东  彭昌盛  孙宗全  沈佳伦  马福俊  谷庆宝
作者单位:1. 中国海洋大学 环境科学与工程学院, 山东 青岛 266100;
基金项目:污染场地安全修复技术国家工程实验室开放基金项目(NEL-SRT201706);国家重点研发计划项目"东北重工业区场地复合污染综合治理技术与集成工程示范"(2019YFC3800)。
摘    要:为探究并优化浸渍热解法制备铁改性生物炭(MBC)活化过硫酸盐(PS)对有机污染物去除的试验条件及影响因素,以2,4-二硝基甲苯(2,4-DNT)为目标污染物,考察了热解参数(热解温度、升温速率和停留时间)、FeCl3浸渍浓度及初始pH值对2,4-DNT去除的影响,并采用电子自旋共振波谱技术及自由基猝灭试验鉴定了PS/MBC体系中生成的自由基。结果表明:1)热解温度对MBC活化PS去除2,4-DNT的影响最显著,其次为升温速率和停留时间;当热解温度、停留时间和升温速率分别为300℃、3 h和10℃/min时,热解制备的MBC对活化PS去除2,4-DNT的效果最佳;2)FeCl3浸渍浓度是影响MBC活化性能的重要因素,随着FeCl3浸渍浓度的升高,2,4-DNT的去除率先增后减,当FeCl3的浸渍浓度为100 mmol/L时,5 h内2,4-DNT的去除率可达到100%,2,4-DNT去除的准一级动力学常数(kobs)为1.373 min-1;3)当初始pH值为5.0~9.0时,2,4-DNT均具有较好的去除效果,其去除率为94.5%~83.6%,kobs为0.606~0.345 min-1;4)PS/MBC体系中生成的·OH是2,4-DNT去除的主要原因,其强度随MBC的热解温度和FeCl3浸渍浓度的不同差异较大。研究结果表明,浸渍热解法制备的MBC可有效活化PS实现污染物的高效去除,为PS化学氧化处理有机污染水体提供了新思路。

关 键 词:过硫酸盐    铁改性生物炭    浸渍热解法    2  4-二硝基甲苯
收稿时间:2021-02-04

REMOVAL OF 2,4-DINITROTOLUENE BY PERSULFATE ACTIVATED WITH IRON MODIFIED BIOCHAR PREPARED BY DIPPING-PYROLYSIS PROCESS
Affiliation:1. Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China;2. Research Institute of Solid Waste Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;3. National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
Abstract:To explore and optimize the experimental conditions and influence factors of the removal of organic pollutants by persulfate activated with iron modified biochar prepared by the dipping-pyrolysis process, 2,4-dinitrotoluene (2,4-DNT) was selected as the target pollutant to investigate the effects of pyrolysis parameters (pyrolysis temperature, heating rate, and residence time), FeCl3 concentration and initial pH values on 2,4-DNT removal. The electron spin resonance and free radical quenching test were used to assess the intensity of SO4-· and ·OH in the PS/MBC system. The results showed that:1) The pyrolysis temperature had the most significant influence on removal of 2,4-DNT by PS activated with MBC, followed by heating rate and residence time. When the pyrolysis parameters were retained at 300℃, 3 h, and 10℃/min, the best removal of 2,4-DNT was obtained by PS/MBC oxidation. 2) The concentration of FeCl3 was an important factor of MBC activation. The removal of 2,4-DNT first increased and then decreased with the increase of the FeCl3 concentration. When the concentration of FeCl3 was retained at 100 mmol/L, the removal efficiency of 2,4-DNT reached 100% after the reaction of 5 h, and the pseudo-first-order kinetic constant (kobs) of 2,4-DNT removal was determined to be 1.373 min-1. 3)When the initial pH ranged from 5.0 to 9.0, 2,4-DNT had a good removal by PS/MBC oxidation, the removal efficiencies were 94.5%~83.6%, and the kobs values were 0.606~0.345 min-1. 4) ·OH was the main factor for the removal of 2,4-DNT by PS/MBC oxidation. The signals of ·OH with different strengths were observed, with the addition of MBC prepared by different pyrolysis temperatures and FeCl3 concentrations. The results showed that MBC prepared by dipping-pyrolysis could effectively activate PS to achieve the removal of organic pollutants, which provided a new idea for treatment of organically polluted water by PS based-advanced chemical oxidation.
Keywords:
点击此处可从《环境工程》浏览原始摘要信息
点击此处可从《环境工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号