重离子辐照 1200 V 碳化硅二极管漏电退化的 缺陷分析

曹爽¹, 于庆奎¹, 郑雪峰², 常雪婷², 王贺¹, 孙毅¹, 梅博¹, 张洪伟¹, 唐民¹

(1.中国空间技术研究院,北京 100029; 2.西安电子科技大学,西安 710071)

摘要:目的研究1200 V 碳化硅二极管重离子辐照诱生缺陷对漏电流退化的影响。方法 以 SiC 结势垒肖特基二极管(Junction Barrier Schottky Diode, JBSD)为样品,采用能量为 208 MeV, *LET*=37.3 MeV·cm²/mg的锗离子进行辐照试验,利用半导体器件分析仪对重离子辐照前后 1200 V SiC 二极管的电学特性进行测试,利用深能级瞬态谱仪(Deep Level Transient Spectrum, DLTS)进行缺陷分析。结果 辐照后,二极管的正向 IV 特性和 CV 特性未发生明显变化,反向 IV 特性退化。DLTS 测试结果显示, $E_{0.4}$ 能级和 Z_1/Z_2 能级基本未发生变化, *EH* 能级有展宽的现象。测试电压 $V_{\rm M}$ =-8 V,填充脉冲电压 $V_{\rm F}$ =-1 V 条件下测得的 EH 能级浓度 比 $V_{\rm F}$ =-4 V 条件下测得的高。结论 分析认为,*EH* 能级的缺陷复杂,推测是两个或多个缺陷能级的叠加(*EH*₄、*EH*₅、*EH*₆、*EH*₇等),此处缺陷的复杂程度与漏电流的退化成正相关,且这些缺陷的所在位置接近 SiC 外延层的表面。

关键词: SiC JBSD; DLTS; 缺陷; 辐照; 重离子; 漏电退化 DOI: 10.7643/issn.1672-9242.2020.03.009 中图分类号: V416 文献标识码: A 文章编号: 1672-9242(2020)03-0053-06

Failure Analysis on Leakage Current Degradation of Heavy-ion-irradiated 1200 V Silicon Carbide Diodes

CAO Shuang¹, YU Qing-kui¹, ZHENG Xue-feng², CHANG Xue-ting², WANG He¹, SUN Yi¹, MEI Bo¹, ZHANG Hong-wei¹, TANG Min¹ (1. China Academy of Space Technology, Beijing 100029, China; 2. Xidian University, Xi'an 710071, China)

ABSTRACT: The paper aims to study the influences of defects induced by heavy ion irradiation on leakage current degradation of 1200 V SiC diode. SiC Junction Barrier Schottky Diode (JBSD) was used as the sample. Germanium ion with energy of 208 MeV and LET=37.3 MeV·cm²/mg was used for irradiation test. The electrical properties of 1200 V SiC diodes before and after heavy ion irradiation were tested with a semiconductor device analyzer, and the defect analysis was carried out with a Deep

收稿日期: 2019-08-05;修订日期: 2019-08-28

Received: 2019-08-05; Revised: 2019-08-28

基金项目: 国家自然科学基金项目(11875068,11805271)

Fund: National Natural Science Foundation of China (11875068, 11805271)

作者简介:曹爽(1995—),女,河北涿州人,硕士研究生,主要研究方向为元器件抗辐射技术。

Biography: CAO Shuang (1995-), Female, from Zhuozhou Hebei, Master, Research focus: components technology against radiation.

通讯作者:于庆奎 (1964—),男,山东烟台人,硕士,研究员,主要研究方向为宇航元器件辐射效应机理及评估技术。

Corresponding author: YU Qing-kui (1964—), Male, from Yantai Shandong, Master, Researcher, Research focus: aerospace components radiation effect mechanism and evaluation technology.

Level Transient Spectrometer. After irradiation, the forward IV and CV characteristics of the diode did not change significantly, and the reverse IV characteristics were degraded. DLTS results showed that the $E_{0.4}$ energy level and Z_1/Z_2 energy level were basically unchanged, and the *EH* energy level was broadened. The concentration of *EH* energy level measured under the test voltage $V_{\rm M}$ =-8 V and filling pulse voltage $V_{\rm F}$ =-1 V was higher than that measured under $V_{\rm F}$ =-4 V. It is concluded that the defects of EH energy level are complex, presumably the combination of two or more defect energy levels (*EH*₄, *EH*₅, *EH*₆, *EH*₇, etc.). The complexity of defects is positively correlated with the degradation of leakage current, and the locations of these defects are close to the surface of SiC epitaxial layer.

KEY WORDS: SiC JBSD; DLTS; defects; irradiation; heavy ion; leakage current degradation

新一代航天器对高压功率器件提出了迫切的使 用需求。第三代半导体材料碳化硅(SiC)因其所具 有的宽禁带(Si的 2~3 倍)、高临界电场(Si的 10 倍)、高热导率(Si的3倍)等优良的材料特性,在 高温高压大功率器件的应用中受到人们的重视。其 中,作为高压功率二极管的代表之一,SiC 结势垒肖 特基二极管具有大电流、高反向偏压、开关速度快、 抗浪涌电流强等特点,适合航天电源系统的应用。国 内外对 SiC 结势垒肖特基二极管开展的单粒子试验 结果表明,其抗单粒子能力远不如预期^[1-11]。在远低 于额定电压的偏置条件下,出现漏电流的增加,甚至 发生单粒子烧毁。目前, SiC 结势垒肖特基二极管重 离子辐照性能退化及单粒子烧毁的机理是当今国际 该领域的研究热点。其中,重离子辐照诱生缺陷对漏 电流退化的影响是一项重要研究内容。国内外已大量 报道关于 4H-SiC 材料生长和离子注入或电子、离子 辐射之后观察到的本征缺陷中心($Z_1/Z_2, P_1/P_2, RD_{1,2},$ RD₃, EH₆₇, …) 以及掺杂或过渡金属(钒, 钛, 铬 和钪)引起的缺陷中心(ID₁, ID₂, …)^[12-24]。国内 外研究结果显示,不同粒子辐照后,SiC 二极管的反 向漏电特性有所不同。Pavel Hazdra 等人^[12]的研究 结果表明, 4.5 MeV 电子辐照后, SiC 二极管的漏电 流保持较低水平且在更高的辐照注量下有所降低。 E. Omotoso 等人^[13]的研究结果显示, α 粒子辐照后 4H-SiC 二极管的漏电流降低,并且他们认为这是辐 照后 Z₁/Z₂ 中心的浓度增加导致载流子浓度降低的结 果。V. Raineri 等人^[14]认为 4H-SiC 的 Z₁/Z₂ 中心是硅 离子辐照后二极管漏电流增加的主要缺陷。对于重离 子辐照试验,国内外已有大量试验结果一致表明,辐 照后, SiC 二极管的漏电流增加。为了深入研究 SiC 结势垒肖特基二极管重离子辐照诱生缺陷与漏电流 退化之间的关系, 文中对 1200 V SiC JBSD 样品开展 了重离子辐照试验,并采用深能级瞬态谱对其进行了 缺陷分析。

1 试验

1.1 重离子辐照试验

试验样品为国产 SiC 结势垒肖特基二极管 (JB-

SD),其额定反向工作电压和平均正向电流分别为 1200 V和8A,样品编号分别为1#和2#。试验样品 采用TO封装,无顶盖,芯片裸露,且表面未涂胶。 试验样品结构剖面和实物分别如图1和图2所示。

采用中国原子能科学研究院 HI-13 串列静电加 速器上产生的 208 MeV 锗(Ge)离子进行辐照试验, Ge 离子特性见表 1。在离子束流辐照过程中,给 SiC 结势垒肖特基二极管施加静态反向偏压,持续监测 其反向漏电流,如果反向漏电流超过设定的限定值 (10 μA)或注量达到 10⁶ cm⁻²,则停止束流辐照。 辐照前后利用 B1500 半导体器件分析仪对其正向、 反向 IV 特性以及 CV 特性进行测试。其中, CV 测

Tab.1 Ion features for tests								
离子	能量/	LET/	在硅中	注量率/				
	MeV	$(MeV \cdot cm^{-2} \cdot mg^{-1})$	射程/μm	$(cm^{-2} \cdot s^{-1})$				
Ge	208	37.3	30.3	2.5×10^{3}				

表 1 试验用离子特性

试频率为1 MHz。

1.2 深能级瞬态谱测试

辐照前后分别对 1#和 2#样品进行深能级瞬态谱测试分析。利用西安电子科技大学的深能级瞬态谱仪 Semetrol DLTS 对辐照缺陷进行测试,分析 SiC JBSD 的重离子辐照诱生缺陷情况。试验中选取的 DLTS 测 试条件见表 2。

表 2 SiC JBSD DLTS 测试条件 Tab.2 SiC JBSD DLTS test conditions

样品编号	反向测试电压 V _M /V	脉冲电压 V _F /V	脉冲宽度/ms	辐照前扫描温度范围/K	辐照后扫描温度范围/K
1#	-8	-4	1	480~60	480~130
2#	-8	-1	1	480~60	480~145

2 结果及分析

2.1 重离子辐照试验结果及分析

锗离子辐照试验结果见表 3。锗离子辐照过程 中,1#样品在 300 V 反向偏压条件下,漏电流随注 量增加而增加。当注量达到 1×10⁶ cm⁻² 时,停止辐 照,此时漏电流在线监测漏电流为 10 μA。2#样品在 400 V 反向偏压条件下,漏电流随注量增加而增加。 当在线监测漏电流达到 10 μA 时,停止辐照,此时 注量为 9.81×10⁴ cm⁻²。

表 3 储离子辐照 SiC JBSD 试验结果 Tab.3 Test results of Ge ions irradiation of SiC JBSD

刑旦却故	样品编号	偏置	总注量/	反向漏
空与风俗		电压/V	cm^{-2}	电流/μA
1200 V	1#	300	1.00×10^{6}	10
二极管	2#	400	9.81×10^{4}	10

辐照前后 2#二极管正向 IV 特性、反向 IV 特性 和 CV 特性对比如图 3 所示。可以看出, 辐照后 2# 二极管的正向 IV 特性和 CV 特性未发生明显变化, 反向 IV 特性退化, 但雪崩击穿电压未发生改变。分 析认为, SiC JBSD 的 PN 结未被破坏,漏电流在较低 电压下出现漏电是因为肖特基结表面电场增加,势垒 高度降低,导致表面漏电增加。

由于肖特基二极管,耗尽层电容可由式(1)表示^[24]:

$$\frac{1}{C^2} = \frac{2(V_{\rm bi} + V_{\rm R})}{\varepsilon_{\rm s}\varepsilon_{\rm 0}qA^2N_{\rm d}}$$
(1)

式中: A 为二极管有源区的面积; ε_s 为介电常数 (SiC 为 9.7); N_d 为载流子浓度; q 为电子电荷量; V_{bi} 为内建电势差; V_R 为所加偏压。 V_{bi} 和 N_d 可以从 $1/C^2 \sim V_R$ 曲线中的横坐标截距和斜率得到。

为直观反应内建电势差和载流子浓度的变化情况,给出了2#样品辐照前后,反偏电压 0~8 V 部分

图 3 2# SiC JBSD 辐照前后的电学特性对比 Fig.3 Electrical characteristics contrast of the 2# SiC JBSD before and after irradiation: a) forward IV characteristics; b) reverse IV characteristic; c) CV characteristics

的 $1/C^2 \sim V_R$ 曲线,如图 4 所示。可以看出,辐照后 $1/C^2 \sim V_R$ 曲线斜率变大,由式(1)可知,载流子浓度 变小。辐照后 $1/C^2 - V_R$ 曲线的横坐标截距变小,即内 建电势差变小。

图 4 2# SiC JBSD 辐照前后 $1/C^2$ - V_R 曲线 Fig.4 The curve of $1/C^2$ - V_R of 2# SiC JBSD before and after irradiation

由于肖特基势垒高度可由式(2)给出^[24]: $\phi_{\rm B} = V_{\rm bi} + \phi_{\rm n}$ (2) 式中: $V_{\rm bi}$ 为内建电势差; $\phi_{\rm n}$ 为金属功函数。

综合式(1)和式(2)可知, 辐照后 2#样品的 势垒高度降低。

2.2 DLTS 测试结果及分析

2#和1#SiC JBSD 辐照前后的 DLTS 测试结果对比 曲线如图 5 所示。可以看出, DLTS 信号($\Delta C/C$)主 要呈现出三个峰,依次将其命名为 $E_{0.4}$ 、 Z_1/Z_2 和 EH。 从图 5a 中可以看出,辐照后, $E_{0.4}$ 能级和 Z_1/Z_2 能级基 本未发生变化,EH 能级有展宽的现象。 $E_{0.4}$ 和 Z_1/Z_2 通常认为是具有特定结构的硅空位和碳空位^[16,25-27]。 分析认为,EH 能级的缺陷复杂,推测是两个或多个 缺陷能级的叠加(EH_4 、 EH_5 、 EH_6 、 EH_7 等)。这些 缺陷均为受主型缺陷^[28-30],俘获电子,使载流子浓度 降低,与 2.1 中分析结果一致。分析认为,载流子浓 度的变化未对二极管漏电产生影响,此处缺陷的复杂 程度与漏电流的退化成正相关。

此外, 从图 5 中可以看出, 测试电压 V_{M} =-8 V, 填 充脉冲电压 V_{F} =-1 V 条件下测得的 *EH* 能级浓度比 V_{F} =-4 V 条件下测得的高。不同 DLTS 测试条件下的耗 尽区分布如图 6 所示。当 DLTS 测试条件为 V_{M} = -8 V, V_{F} =-4 V 时, 测试的耗尽区范围为区域①; 当 DLTS 测试条件为 V_{M} =-8 V, V_{F} =-1 V 时, 测试的耗尽区范 围为区域①和区域②。因此, 认为 V_{F} =-1 V 测试条件 下测得的 EH 能级浓度较高是因为大部分 EH 缺陷位 于区域②, 这些缺陷的所在位置接近 SiC 外延层的表 面。推断这些位于靠近 SiC 外延层表面的复杂缺陷是 导致 SiC 二极管漏电退化的原因之一。然而, 由于

图 5 SiC JBSD 辐照前后的 DLTS 测试结果对比 Fig.5 DLTS test results contrast of SiC JBSD before and after irradiation

DLTS 是测量耗尽区中的电容,反映的是耗尽区中的 微观缺陷情况。根据 2.1 节正反向 IV 特性测试结果, 造成辐照后二极管反向 IV 特性退化的原因也有可能 是辐照过程中金属受损,产生的宏观缺陷等。

3 结论

通过对重离子辐照前后 1200 V碳化硅二极管的 电学特性和深能级瞬态谱进行对比分析,可以得到以 下结论。

1)重离子辐照后,SiC JBSD 反向漏电流退化的 原因之一是辐照使二极管的势垒高度降低。

2)重离子辐照后,载流子浓度有所降低,未对 漏电流退化产生影响。

3)重离子辐照后,SiC JBSD 反向漏电流的退化 与 EH 缺陷的复杂程度成正相关。

4) EH 缺陷的所在位置接近 SiC 外延层表面,推断这些靠近 SiC 外延层表面的复杂缺陷是导致 SiC 二 极管漏电退化的原因之一。

5) DLTS 测量的是耗尽区中的电容,反映耗尽 区中的微观缺陷情况,造成二极管反向 IV 特性退化 的原因可能是辐照过程中金属受损,产生的宏观缺 陷等。

参考文献:

- AKTURK A, MCGARRITY J M, POTBHARE S, et al. Radiation Effects in Commercial 1200 V 24 A Silicon Carbide Power MOSFETs[J]. IEEE Transactions on Nuclear Science, 2013, 59(6): 3258-3264.
- [2] AKTURK A, MCGARRITY J M, RICHARD W, et al. Space and Terrestrial Radiation Response of Silicon Carbide Power MOSFETs[C]// 2017 IEEE Nuclear & Space Radiation Effects Conference. NewYork: IEEE Transactions on Nuclear Science, 2017.
- [3] 王敬轩, 吴昊, 王永维, 等. SiC MOSFET 器件抗辐照 特性研究[J]. 智能电网, 2016, 4(11): 1078-1081.
 WANG Jing-xuan, WU Hao, WANG Yong-wei, et al. Anti-radiation Characteristics of SiC MOSFET[J]. Smart Grid, 2016, 4(11): 1078-1081.
- [4] 尚也淳,张义门,张玉明. SiC 抗辐照特性的分析[J]. 西安电子科技大学学报(自然科学版), 1999, 26(6): 807-811.
 SHANG Ye-chun, ZHANG Yi-men, ZHANG Yu-ming.

Analysis of the SiC Irradiation Resistance[J]. Journal of Xidian University (Natural Science), 1999, 26(6): 807-811.

- [5] HARRIS R D, FRASCA A J, PATTON M O. Displacement Damage Effects on the Forward Bias Characteristics of SiC Schottky Barrier Power Diodes[J]. IEEE Transactions on Nuclear Science, 2006, 52(6): 2408-2412.
- [6] NIGAM S, KIM J, REN F, et al. High Energy Proton Irradiation Effects on SiC Schottky Rectifiers[J]. Applied Physics Letters, 2002, 81(13): 2385-2387.
- [7] LUO Z, CHEN T, CRESSLER J D, et al. Impact of Proton Irradiation on the Static and Dynamic Characteristics of High-voltage 4H-SiC JBS Switching Diodes[J]. IEEE Transactions on Nuclear Science, 2003, 50(6): 1821-1826.
- [8] LUO Z, CHEN T, AHYI A C, et al. Proton Radiation Effects in 4H-SiC Diodes and MOS Capacitors[J]. IEEE Transactions on Nuclear Science, 2004, 51(6):

3748-3752.

- [9] GERARDIN S. Radiation Performance of New Semiconductor Power Devices for the LHC Experiment Upgrades[J]. Hamon, 2013, 20(101): 54-57.
- [10] JEAN-MARIE L, MEGAN C, ALYSON T, et al. Silicon Carbide Power Device Performance Under Heavy-ion Irradiation[C]// IEEE Nuclear and Space Radiation Effects Conference (NSREC). Boston, Massachusetts, 2015.
- [11] JEAN-MARIE L, MEGAN C. Taking SiC Power Devices to the Final Frontier: Addressing Challenges of the Space Radiation Environment[R]. Maryland: NASA Goddard Space Flight Center (GSFC), 2017.
- [12] HAZDRA P, ZÁHLAVA V, VOBECKY J. Point Defects in 4H-SiC Epilayers Introduced by 4.5 MeV Electron Irradiation and their Effect on Power JBS SiC Diode Characteristics[J]. Solid State Phenomena, 2013, 205-206: 451-456.
- [13] OMOTOSO E, MEYER W E, AURET F D, et al. Response of Ni/4H-SiC Schottky Barrier Diodes to Alpha-particle Irradiation at Different Fluences[J]. Physica B: Condensed Matter, 2016, 480: 196-200.
- [14] RAINERI V, ROCCAFORTE F, LIBERTINO S, et al. Correlation between Leakage Current and Ion-irradiation Induced Defects in 4H-SiC Schottky Diodes[J]. Materials Science Forum, 2006, 527-529: 1167-1170.
- [15] DALIBOR T, PENSL G, MATSUNAMI H, et al. Deep Defect Centers in Silicon Carbide Monitored with Deep Level Transient Spectroscopy[J]. Physica Status Solidi, 1997, 162(1): 199-225.
- [16] DOYLE J P, LINNARSSON M K, PELLEGRINO P, et al. Electrically Active Point Defects in n-type 4H-SiC[J]. Journal of Applied Physics, 1998, 84(3): 1354.
- [17] DAVYDOV D V, LEBEDEV A A, KOZLOVSKI V V, et al. DLTS Study of Defects in 6H- and 4H-SiC Created by Proton Irradiation[J]. Physica B Condensed Matter, 2001, 308: 641-644.
- [18] CASTALDINI A, CAVALLINI A, RIGUTTI L, et al. Low Temperature Annealing of Electron Irradiation Induced Defects in 4H-SiC[J]. Applied Physics Letters, 2004, 85(17): 3780.
- [19] STORASTA L, BERGMAN J P, JANZE?N E, et al. Deep Levels Created by Low Energy Electron Irradiation in 4H-SiC[J]. Journal of Applied Physics, 2004, 96(9): 4909.
- [20] DAVID M L, ALFIERI G, MONAKHOV E V, et al. Evidence for Two Charge States of the S-center in Ion-implanted 4H-SiC[J]. Materials Science Forum, 2003, 433-436: 371-374.
- [21] KAWAHARA K, KRIEGER M, SUDA J, et al. Deep Levels Induced by Reactive Ion Etching in n- and p-type 4H-SiC[J]. Journal of Applied Physics, 2010, 108(2): 199.
- [22] DANNO K, KIMOTO T. Investigation of Deep Levels in n-type 4H-SiC Epilayers Irradiated with Low-energy Electrons[J]. Journal of Applied Physics, 2006, 100(11): 113728.

- [23] HEMMINGSSON C, SON N T, KORDINA O, et al. Capacitance Transient Studies of Electron Irradiated 4H-SiC[J]. Materials Science & Engineering B, 1997, 46(1): 336-339.
- [24] 赵毅强,姚素英,史再峰,等.半导体物理与器件[M]. 第四版.北京:电子工业出版社,2011.
 ZHAO Yi-qiang, YAO Su-ying, SHI Zai-feng, et al. Semiconductor Physics and Devices[M]. The Fourth Edition. Beijing: Publishing House of Electronics Industry, 2011.
- [25] KAWAHARA K, THANG T X, TIEN S N, et al. Investigation on Origin of Z1/2 Center in SiC by Deep Level Transient Spectroscopy and Electron Paramagnetic Resonance[J]. Applied Physics Letters, 2013, 102(11): 199.
- [26] KAWAHARA K, THANG T X, TIEN S N, et al. Quantitative Comparison between Z1/2 Center and Carbon Vacancy in 4H-SiC[J]. Journal of Applied Physics, 2014, 115(14): 199.

- [27] TRINH X T, SZÁSZ K, HORNOS T, et al. Negative-U Carbon Vacancy in 4H-SiC: Assessment of Charge Correction Schemes and Identification of the Negative Carbon Vacancy at the Quasicubic Site[J]. Physical Review B, 2013, 88(23): 235209.
- [28] ALFIERI G, MONAKHOV E V, SVENSSON B G, et al. Defect Energy Levels in Hydrogen-implanted and Electron-irradiated n-type 4H Silicon Carbide[J]. Journal of Applied Physics, 2005, 98(11): 113524.
- [29] ALFIERI G, MONAKHOV E V, SVENSSON B G, et al. Annealing Behavior between Room Temperature and 2000 °C of Deep Level Defects in Electron-irradiated n-type 4H Silicon Carbide[J]. Journal of Applied Physics, 2005, 98(4): 043518.
- [30] WEBER J, BELJAKOWA S, WEBER H B, et al. Determination of the Electrical Capture Process of the EH₆-Center in n-Type 4H-SiC[J]. Materials Science Forum, 2013, 740-742: 377-380.