首页 | 官方网站   微博 | 高级检索  
     

电热耦合强化非均质介质中三氯乙烯DNAPL的迁移去除
引用本文:耿竹凝,刘波,黄菀,李广贺,张芳.电热耦合强化非均质介质中三氯乙烯DNAPL的迁移去除[J].环境科学研究,2020,33(8):1911-1918.
作者姓名:耿竹凝  刘波  黄菀  李广贺  张芳
作者单位:1.清华大学环境学院, 环境模拟与污染控制国家重点联合实验室, 北京 100084
基金项目:国家重点研发计划项目(No.2018YFC1802500)
摘    要:在氯代烃污染场地修复中,电阻加热技术因不受地层条件影响、污染物修复效率高等特点在氯代烃污染地块修复中得到了广泛关注,但仍存在用电量大、能耗较高等问题.通过创建基于脉动直流电的电热耦合修复体系,以三氯乙烯为模拟污染物,比较了其与传统基于交流电模式的电阻加热技术在修复非均质介质三氯乙烯重质非水相液体(DNAPL,dense nonaqueous-phase liquid)时的去除效率及能耗,分析了造成其修复差异的原因.结果表明:电热耦合体系下介质的增温幅度明显优于交流电体系,最高温度可达100℃,而交流电体系最高温度仅为70℃,这表明脉动直流电通过引入电极水电解反应提高了介质电导率,从而达到更高的温度,进一步促进了污染物的加热挥发作用.反应结束后,电热耦合体系中三氯乙烯主要集中在阴极侧,而交流电体系中三氯乙烯无定向分布特征,表明电热耦合体系中的直流电场可通过电渗析作用增强三氯乙烯向阴极的定向迁移.经过48 h持续反应,脉动直流电体系对三氯乙烯DNAPL的去除率为88%,可较同等电压下交流电体系提升2.2倍,而能耗仅为1.92 kW·h/(log·kg),是交流电体系的32%.研究显示,利用脉动直流电加热可通过强化相变迁移和电渗析定向迁移效应共同作用于三氯乙烯去除,有效提高三氯乙烯DNAPL的去除率,降低体系修复能耗. 

关 键 词:三氯乙烯    重质非水相液体    原位热修复    脉动直流电
收稿时间:2020/2/22 0:00:00
修稿时间:2020/4/2 0:00:00

Enhancing Migration and Removal of DNAPL Using Combined Electrokinetic and Thermal Treatment
GENG Zhuning,LIU Bo,HUANG Wan,LI Guanghe,ZHANG Fang.Enhancing Migration and Removal of DNAPL Using Combined Electrokinetic and Thermal Treatment[J].Research of Environmental Sciences,2020,33(8):1911-1918.
Authors:GENG Zhuning  LIU Bo  HUANG Wan  LI Guanghe  ZHANG Fang
Affiliation:1.State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China2.National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
Abstract:Electrical resistance heating technology has been widely applied in the site remediation of chlorinated hydrocarbons because of its high efficiency regardless of site heterogeneity, but it requires high energy input. In this study, we proposed a system that combines electrical resistance heating (ERH) process with electrokinetic migration for enhanced remediation based on pulsed direct current (PDC). Trichloroethylene was used as a model pollutant, and its removal efficiency and energy consumption were compared with the traditional ERH technology based on alternating current (AC). As a result, faster temperature increase was achieved by PDC compared with the conventional AC. The highest temperature in PDC system was 100 ℃ while only 70 ℃ was achieved by the conventional AC. PDC could increase the electrical conductivity of silica sand by introducing water electrolysis reactions into the remediation process. After 48 h of treatment, 88% of TCE was removed from fine silica sand using PDC, which was 2.2 times that of AC mode. The highest concentration of TCE with PDC mode was found near the cathode, indicating electroosmosis also contributed to TCE migration and removal from fine sand. The normalized energy consumption in PDC system was 1.92 kW·h/(log·kg), only 32% of that in the AC system. The results indicated that PDC is a promising remediation approach to improve the energy-efficiency and effectiveness of ERH. 
Keywords:trichloroethylene  dense nonaqueous-phase liquid  in situ thermal remediation  pulsed direct current
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号