首页 | 官方网站   微博 | 高级检索  
     

含水层压缩空气储能过程中储层渗流特性及地球化学过程研究进展
引用本文:左锐,潘明浩,刘嘉蔚,胡立堂,郑世达,徐祚荣,王金生.含水层压缩空气储能过程中储层渗流特性及地球化学过程研究进展[J].环境科学研究,2022,35(8):1769-1778.
作者姓名:左锐  潘明浩  刘嘉蔚  胡立堂  郑世达  徐祚荣  王金生
作者单位:1.北京师范大学水科学研究院,北京 100875
基金项目:国家自然科学基金项目(No.41877181);国家重点研发计划项目(No.2020YFC1806600)
摘    要:含水层压缩空气储能(compressed air energy storage in aquifer, CAESA)是实现“双碳”目标的重要途径,储层中的渗流条件及地球化学过程是其能否规模化应用的先决条件. 本文在文献计量学分析基础上,系统归纳技术发展历程及场地探索案例,全面整理CAESA过程中储层渗流条件的前期研究,以地球化学过程为关注重点总结储层渗流条件的变化特征,提出相应的研究展望. 结果表明:①渗透率、孔隙度通过影响储存气囊压力的稳定性进而决定系统性能,其中渗透率存在适宜区间,渗透率较低将限制气体循环,渗透率较高则不利于维持气囊压力. ②应力变化及地球化学过程均会引起储层渗流条件的变化,地球化学过程影响途径主要包括原生矿物溶解、次生矿物沉淀及氧化反应,CO2组分参与的水-岩反应对储层具有重要影响. 为实现对于储层渗流特性的认识突破,未来应以储层渗流条件、压缩空气储存机制为研究重点,充分结合试验、数值模拟等技术手段,进一步关注储能模式下储层渗流条件变化及非均质性影响,加强针对压缩空气在储层中的动力学、热力学行为研究,明晰地球化学过程对储层条件的关键影响,从储层角度论证大规模储能应用的高效可行. 

关 键 词:含水层    压缩空气储能  (CAES)    孔隙度    渗透率    地球化学
收稿时间:2022-01-22

Review on Flow Characteristics and Geochemical Process during Compressed Air Energy Storage in Aquifer
Affiliation:1.College of Water Sciences, Beijing Normal University, Beijing 100875, China2.Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
Abstract:Compressed air energy storage in aquifer (CAESA) is a prominent technology in the process of achieving the ‘Carbon Peaking and Carbon Neutrality’ goal, the flow characteristics and geochemical processes in the reservoir are prerequisites for its large-scale application in the future. On the basis of bibliometric analysis, the development timeline of the technology and the exploration process of filed experiments are systematically summarized, the previous studies on reservoir flow conditions during compressed air energy storage are comprehensive summarized, the variation of reservoir properties is summarized with an emphasis on geochemical processes, and the corresponding research outlook is proposed. The results show that: (1) Permeability and porosity determine the system performance by influencing the stability of the pressure of reservoir bubble. There is a suitable permeability range, a lower permeability will limit the gas circulation, while a higher value is not conducive to maintaining the bubble pressure. (2) Stress variation and geochemical process can cause changes in reservoir flow parameters, the geochemical processes mainly include primary mineral dissolution, secondary mineral precipitation and oxidation reactions, among which the water-rock reactions involving CO2 have significant impact on the reservoir. In order to achieve a breakthrough in understanding the flow characteristics of reservoir, research should be emphasized in areas related to reservoir properties and compressed air storage mechanism, and be focused on the variation of reservoir flow conditions and the influence of reservoir heterogeneity in the combination of various methods including experiment and numerical simulation. Research on the kinetics and thermodynamic behavior of compressed air in reservoir should be strengthened to clarify the key influence of geochemical processes on reservoir, and to demonstrate the high efficiency and feasibility of large-scale energy storage applications from the perspective of reservoirs. 
Keywords:
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号