正矩阵因子分解法评价北京市 PM₁₀ 和 SO, 监测网络 郜涛¹,谢绍东¹*,薄宇¹,赵越² (1. 北京大学环境科学与工程学院,环境模拟与污染控制国家联合重点实验室,北京 100871; 2. 北京市环境保护监测中心, 北京 100044) 摘要:为辨识北京市大气污染物变化规律相同的区域,筛选监测网络中表征冗余信息的监测点,使用正矩阵因子分解法分别对北京市 PM_{10} 和 SO_2 监测网络进行分析与评价. 分析获得北京市 PM_{10} 和 SO_2 明显的季节变化特征: PM_{10} 浓度春季最高,夏季较低, SO_2 浓度冬季最高,夏季较低. 采用正矩阵分解法对 PM_{10} 监测网络解析出 3 个因子,对应北京市 PM_{10} 污染变化特征相同的 3 个区域,分别为区域 1 代表监测点为车公庄与石景山古城,区域 2 代表监测点为位于城东的前门、天坛、农展馆与奥体中心,区域 3 代表监测点定陵. 结果表明区域 2 监测点密度较大,存在表征冗余信息的监测点,可以考虑撤销或迁移部分监测点.对 SO_2 监测网络解析出 6 个因子,分别对应北京市 SO_2 污染变化特征相同的 6 个区域,代表监测点位分别为定陵、古城、东四、奥体中心、农展馆与天坛和前门与车公庄. 评价结果表明北京市 PM_{10} 和 SO_2 监测网络都存在冗余信息的监测点,可以根据分区结果考虑撤销或者迁移部分监测点,优化监测网络. 关键词:大气污染监测网络;优化布点;正矩阵因子分解法;PM10 SO2 中图分类号:X32 文献标识码:A 文章编号 0250-3301(2010)03-0560-06 # Assessing PM₁₀ and SO₂ Networks Using Positive Matrix Factorization in Beijing City GAO Tao¹, XIE Shao-dong¹, BO Yu¹, ZHAO Yue² (1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; 2. Beijing Municipal Environmental Monitoring Center, Beijing 100044, China) Abstract :The aim of this study was to identify city areas with similar air pollution characteristics and determine which sites may be providing redundant information. Positive matrix factorization(PMF) was applied in this study to assess the mass concentrations of sulfur dioxide (SO₂) and particulate matter with an aerodynamic diameter less than 10 μm (PM₁₀), collected in the air quality monitoring network in the year of 2000. The analysis indicated that there were obviously seasonal variations for PM₁₀ and SO₂ in Beijing. The PM₁₀ concentrations were higher in spring and lower in summer, but the SO₂ concentrations were higher in winter and lower in summer. The results of the PMF showed that the sites of PM₁₀ network in Beijing could be identified as three regions, which represented city areas characterized by the same specific air pollution. These three regions represented Gucheng site/Chegongzhuang site, Qianmen site/National Olympic Sports Center site/Tiantan site/Nongzhanguan site, and Ming Tombs site, respectively. Some sites in region 2 which included four sites may be redundant and can be removed. SO₂ network can be divided into six regions including Chegongzhuang site/Qianmen site, Tiantan site/Nongzhanguan stie, Ming Tombs site, National Olympic Sports Center site, Dongsi site, and Gucheng site. It indicated that some sites in Beijing PM₁₀ and SO₂ monitoring networks might be redundant and could be removed or relocated to other areas. Key words air pollution monitoring networks; optimum setting; positive matrix factorization; PM₁₀; SO, 我国大气污染监测网络建设始于 20 世纪 70 年代末,当时采用功能分区的方式定性布设监测点^[1],因该方法主观因素大,环境监测点分布不合理,有些监测点位并不能客观、准确地反映污染物时空变化特征及该地区环境质量. 因此评价现有的监测网络,对监测网络优化是环境监测活动的一项重要工作. 随着大气污染治理力度的加大,北京市大气污染监测网络的规模不断扩大,目前已有 8 个国控监测子站,日常运行费用也不断增加. 若能辨识出污染物变化特征相似的区域,删去或迁移冗余监测点,可以有效提高北京市环境监测资源的利用效率. 常用的监测网络评价方法主要有主成分分析法^[2-6] 聚类分析法^[7-12] 相关分析法^[13] ,正矩阵因子法^[14]等. 这些方法可以归类反映相同污染物变化特征的监测点 ,并且筛选反映冗余信息的监测点. 正矩阵因子分解法(positive matrix factorization , PMF) 在源解析中使用较多^[15-19] ,Rizzo 等^[14]首次把这种方法引入监测网络管理领域 ,对美国东北部臭氧监 收稿日期 2009-04-13 ,修订日期 2009-05-28 基金项目 :环境保护公益性行业科研专项(200709001) 作者简介 郜涛(1983~),男,硕士研究生,主要研究方向为环境模 拟与污染控制,E-mail:gthaotao@163.com ^{*} 通讯联系人 Æ-mail sdxie@pku.edu.cn 测网络进了评估,解析出10个因子,分别表征0。变 化规律相同的区域. 本研究首次将正矩阵因子分解法应用于评价国 内大气监测网络,选择北京市首要污染物 PM ... 及 SO, 为评价对象 根据北京市 2000 年 PM, 和 SO, 日 均浓度数据,辨识北京市污染物变化规律相同的区 域 ,筛选表征冗余信息的监测点位 ,以期为北京市大 气监测网络优化布点提供参考依据. #### 1 研究方法 #### 1.1 正矩阵因子分解法 正矩阵因子分解法[20]是芬兰赫尔辛基大学 Paatero 教授在 20 世纪 90 年代中期开发的多元统计 分析方法. 正矩阵因子法使用最小二乘算法处理因 子分析问题[21],不同于传统的因子分析模式,正矩 阵因子模式约束解析出的因子为非负 非正交 从而 保证每个因子贡献都有实际的物理意义. 正矩阵因 子分解法的二维模型 PMF2 的数学原理如下[22]: $$X = GF + E \tag{1}$$ 定义模式解析出 p 个因子. 这里 X 是一个 $n \times m$ 矩 阵 代表 m 个监测站点 n 天监测数据 ,是正矩阵因 子分解模式主要的输入数据; G 是一个 $n \times p$ 矩阵, 表示观测时间 t 时的因子贡献; F 是一个 $p \times m$ 矩 阵 表示因子负荷; G 和 F 是正矩阵因子分解模式 主要的输出结果,G的列和对应的F的行表征一个 因子的特性. 残差矩阵 E 是一个 $n \times m$ 型矩阵 ,定义 为实际数据与解析结果之间的差值. 为解析出 G 和 F ,正矩阵因子模式的过程要求 Q 趋于最小: $$Q(E) = \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\frac{e_{ij}}{s_{ij}} \right)$$ (2) 式中 Q 是参差与观测值不确定性比值的平方和 ; e_{ij} 表征监测站点j在时间i时观测值的参差; s_{ii} 表示监 测站点 *j* 在时间 *i* 时观测值的不确定性. 正矩阵因子法解析出的因子负荷矩阵 F ,与传 统的因子分析法所表达的物理意义有所不同. 传统 的因子分析法中,因子负荷表示因子与变量间相关 性大小;而正矩阵因子法中,因子负荷量表征模式预 测变量浓度时,每个因子作用的大小[14]. 本研究在 正矩阵因子法解析过程中,设置G矩阵每列加和为 1,解析出的 F 矩阵中每个因子负荷量的物理意义 表示预测监测点浓度大小. 针对本研究案例,应用正矩阵分析法对北京市 大气监测网络评估过程中,解析出p个因子,分别表 征污染物变化规律相同的区域,每个区域都包括全 部监测点的信息,根据输出结果 F 负荷矩阵表示的 浓度高低判断每个因子作用大小,每个区域中浓度 最大的几个监测点为该区域主要表征对象,同时表 示这些监测点相关性越大. 561 #### 1.2 数据来源和处理 本研究使用正矩阵因子法分析北京市 PMin和 SO, 监测网络,数据使用北京市8个国控监测子站 2000年日平均浓度,监测点为定陵、车公庄、前门、 东四、天坛、奥体中心、农展馆和石景山古城 具体位 置见图 1. 1. 定陵 2. 车公庄 3. 前门 4. 东四; 5. 天坛 16. 奥体中心 17. 农展馆 18. 石景山古城 图 1 北京市空气质量监测站分布示意 Fig. 1 Distribution of air quality monitoring sites in Beijing City 监测数据的预处理包括:缺失数据采用时间内 插的方法计算得到;并且要求记录数据的天数至少 占到全年天数的80%,对于缺失数据超过20%的, 则不使用这个监测点的数据. 对 PM10,东四监测点 数据缺失超过 20% 因此在评价 PM10 监测网络时删 去该点. 正矩阵因子法要求计算每个监测数据的不确定 性,作为输入数据.监测数据不确定性计算方法如 下:对于非缺失数据,采用数据值的10%作为该数 据的不确定性;对于缺失数据,使用内插数据值的 20%作为该数据的不确定性[14]. #### 2 结果与讨论 #### **2.1** PM₁₀和 SO₂ 季节变化特征 本研究选择定陵、前门和石景山古城 3 个监测 点的 PM in 浓度水平为代表显示北京市 PM in 变化趋 势,这3个监测点分别位于北京市西北边远乡村、城 市核心区和城市西郊工业区. 从图 2 可以看出 PM.。 浓度在春季最高,夏季最低.春季北京多沙尘出现, 是造成这一时期大气中 PM₁₀浓度较高的原因. 其中 4月 PM10 浓度最高 ,是本月几次扬沙浮尘天气造成 的结果[23 24]. 夏季 PM10排放减少 ,同时湍流发展旺 盛的不稳定型天气出现频率较多,利于 PMin扩散稀 释 ,因此 PM , 浓度较低. 此外 ,石景山古城监测点年 均浓度最高,达到197 µg/m³,接近国家二级标准 (100 μg/m³)的 2 倍. 这是由于古城监测点位于石 景山工业区,矿石燃料消耗量大,尤其是冬季,燃煤 大量使用[25] 造成这一地区的 PM10 浓度较高. 值得 注意的是,作为北京市背景监测点的定陵,PM10年均 浓度达到 99 µg/m³,十分接近国家二级标准(100 μg/m³). 定陵点所处在地区远离污染源,主要是 PM10在大气中传输的造成的. 这与国外类似研究结 果相近,Pereira等[26]的研究表明在远离城市的边远 乡村地区,也观测到高浓度 PM₁₀,并且指出这是区 域内污染物传输的结果. 图 2 北京市 PM₁₀ 月平均浓度 Fig. 2 $\,$ Average monthly concentrations of PM_{10} in Beijing City 大气中 SO₂ 浓度也同样具有明显的季节变化特征. 这里依然选择定陵、前门和石景山古城 3 个监测点的 SO₂ 浓度水平显示北京市 SO₂ 变化趋势(图3). 可以看出北京市 1、2、3、11 和 12 月 SO₂ 污染严重. 这是由于 11 月 ~ 次年 3 月为北京市采暖期,燃煤使用量大,非采暖期燃煤使用量明显较少,造成 SO_2 浓度较大差异. 此外大气扩散条件也影响大气中 SO_2 浓度变化. 北京地区湍流发展旺盛的不稳定型天气 7 月频率最高 ,利于污染物的扩散稀释 ,稳定型天气 12 月频率最高 ,不利于污染物的扩散[27] ,造成大气中 SO_2 的积累. 图 3 北京市 SO₂ 月平均浓度 Fig. 3 Average monthly concentrations of SO_2 in Beijing City #### 2.2 正矩阵因子分解法评价 PM 1 监测网络 用正矩阵因子分解法分析北京市 PM_{10} 监测数据 ,得到 p=3 ,表示解析出 3 个因子,分别对应污染物变化规律相同的区域. 根据输出结果 F 负荷矩阵作图,图 4 每个区域都包括 7 个监测点的信息,浓度高低代表每个因子作用大小,每个区域中浓度最大的几个监测点为该区域主要表征对象,同时表示这些监测点相关性越大. 车公庄和石景山古城监测点是区域 1 的主要表征对象,前门、天坛、奥体中心和农展馆监测点是区域 2 的主要表征对象,定陵点是区域 3 的主要表征对象。可见北京市大气中的 PM_{10} 农展馆监测点是区域 2 的主要表征对象,定陵点是区域 3 的主要表征对象。可见北京市大气中的 PM_{10} 农民馆监测点的区域性分布特征. 除地处北京西北远郊的定陵点,其他监测点的 PM_{10} 浓度呈区域性分布,其中车公庄与石景山古城,以及奥体中心、前门、天坛与农展馆都有很好的空间相似性. 图 4 正矩阵因子分解法分析 PM₁₀数据 Fig. 4 Assessment of PM_{10} monitoring network by using positive matrix factorization 从模式解析结果来看,区域1的车公庄和石景 山古城点,所受本地污染源有所区别,车公庄位于西 二环到三环间,受机动车影响严重,古城点受石景山 工业污染源严重,但是2个监测点 PM10日均浓度有 很好的相关性 其它要素如气象条件和地理条件也 是影响大气中 PM10 空间分布的重要因素. Gramscha 等[28]研究表明城市 PM10污染的区域性分布特征受 到城市地形条件的影响,对于地势复杂的区域,甚至 起到决定性作用. 此外气象因子的变化导致的局地 环流,能使颗粒物在较大范围内传输,也是促使颗粒 物区域性分布的原因[29].区域2的主要表征对象奥 体中心、前门、天坛和农展馆,全部位于北京市东部. 前门位于北京市主要的商业和居住区,受机动车影 响较大,天坛点在天坛公园附近、奥体中心点和农展 馆点位于居住区 机动车影响也很明显 这些监测点 受污染源影响虽然存在差异,但是都有较好的相关 性. Song 等[30]研究表明位于北京市西部的石景山工 业区产生的 PM 10 对北京市东部地区贡献很小 ,与上 述结果相吻合 ,说明北京市 PM ,。浓度分布除受污染 源影响外,还受到诸如气象和地形条件的影响. 根据正矩阵因子分解法对北京市 PM_{10} 监测网络分析的结果 ,对污染物变化规律相同的区域进行分析. 图 5 显示了 3 个区域 PM_{10} 月均浓度变化特征 ,从中可以看出 PM_{10} 浓度城区高于乡村地区 ,西南城郊高于城区. 2000 年 1、3、4、6、11 月 PM_{10} 浓度较高 ,其中 4 月污染最严重 ,这是由于 4 月沙尘天气出现频率最高 ,1 a 中大约 50% 的沙尘天气出现在这个月份 131 . 2000 年 4 月北京地区气温回升快 , 图 5 各区域 PM₁₀ 月均浓度变化 Fig. 5 Average monthly concentration variations of PM_{10} in each area of Beijing City 低涡频繁侵入,连续几次冷空气活动,造成了严重的沙尘天气 $[^{32}]$. 1、2、11、12 月的采暖期,燃煤是 PM_{10} 主要来源,但是 2000 年 1 月、11 月出现个别的沙尘天气 $[^{33}]$,使这 2 个月 PM_{10} 浓度要高于 2 月和 12 月.6 月天气利于二次硫酸盐和二次硝酸盐的形成, PM_{10} 浓度较高,但是位于西北部乡村地区的定陵在 6 月没有 PM_{10} 高值出现,主要原因是这一地区机动车远少于城区. ### 2.3 正矩阵因子分解法评价 SO_2 监测网络 用正矩阵因子分解法对北京市 SO₂ 监测网络进行评价,共解析出 6 个因子,分别对应 6 个污染物变化规律相同的区域. 从图 6 可以看出:区域 1 主要表征对象是石景山古城点,区域 2 主要表征对象是定陵点,区域 3 表征对象是农展馆和天坛点,区域 4 主 图 6 正矩阵因子分解法分析 SO_2 数据 Fig. 6 Assessment of SO₂ monitoring network by using positive matrix factorization 要表征对象是奥体中心点,区域5主要表征对象是车公庄和前门点,区域6是东四点. 区域 1 的古城监测点位于城郊石景山工业区, 该区工业燃煤消耗量大,是SO。主要来源,但是与民 用燃煤相比,硫的释放率和排放系数较小,致使古城 点具有下面特点:采暖期 SO2 浓度并不是北京市最 大,但是非采暖期有较大浓度出现.区域2的定陵监 测站位于北京市远郊 ,是北京市背景监测点 ,与其他 监测站相比,该地区采暖期和非采暖期 SO₂ 浓度变 化很小 ,冬季 SO₂ 排放主要是附近村落燃煤所致. 区 域 3 是天坛点和农展馆点所在地区,天坛监测站位 于天坛公园附近,与农展馆都在城市核心区外围, SO, 浓度相比城市核心区变化幅度小. 区域 4 的奥 体中心点位于北四环附近,是北京市发展最为迅速 的地区,在非采暖期该地区SO,浓度也较大,该地区 呈现复合污染的趋势. 区域 5 主要表征前门和车公 庄2个监测点,这2个点位于城市核心区,人口密 集,交通量大,在采暖期和非采暖期,这2个监测点 污染物变化特征都相同. 区域 6 的东四点同样位于 城市核心区,该地区居民生活、采暖用煤量较大,是 北京市 SO, 年均浓度最大、超标天数最多的地区. 东 四点与前门同处于城市核心区,并且距离较近,这2 点在采暖期相关性较好,但是在非采暖期相关性较 差 ,非 采 暖 期 ,前 门 地 区 受 机 动 车 排 放 影 响 更 为 严重. 根据正矩阵因子分解法对北京市 SO_2 监测网络分析的结果 ,对污染物变化规律相同的区域进行分析. 图 7 显示了各区域 SO_2 月均浓度变化特征 ,从中可以看出从 11 月 ~ 次年的 3 月的采暖期 ,各区域 SO_2 明显大于其他月份 ,采暖期燃煤需求量大 , SO_2 排放量大 ,另外冬春季稳定性天气出现频率高 ,不利 图 7 正矩阵因子分解法分析 PM 10 数据 Fig. 7 Average monthly concentration variations ${\rm of} \ {\rm SO}_2 \ {\rm in} \ {\rm each} \ {\rm area} \ {\rm of} \ {\rm Beijing} \ {\rm City}$ 于污染物的稀释扩散. 东四点所在地区人口密集,冬季居民生活、采暖用煤量大,再加上民用燃煤品质低,致使该地区冬春季 SO_2 污染最严重. 古城点所在地区因为临近石景山工业区,夏秋两季 SO_2 浓度也高于其它地区. #### 3 结论 (1)北京市大气中的 PM_{10} 和 SO_2 具有明显的时空变化特征. PM_{10} 浓度春季最高 ,夏季较低 ,城区高于乡村地区 ,西南部郊区高于城区 ,其中古城点浓度最高. SO_2 采暖期浓度高 ,夏季浓度较低 ,东四点浓度最高. (2)采用正矩阵因子分解法对 PM₁₀监测网络评价 ,解析出 3 个因子 ,对应北京市 PM₁₀污染变化特征相同的区域 ,区域 1 包括监测点为车公庄与石景山古城 ,区域 2 包括城东的前门、天坛、农展馆与奥体中心 ,区域 3 表征监测点定陵. 结果表明区域 2 监测点密度较大 ,存在信息重复的现象 ,可以考虑撤销或迁移部分监测点. (3)对 SO₂ 监测网络解析出 6 个因子,分别对应北京市 SO₂ 污染变化特征相同的区域,其中,区域 3 是天坛和农展馆,区域 5 是车公庄和前门,其他定陵、古城、东四、奥体中心分别表征一个区域.结果表明区域 3 和区域 5 存在信息重复的监测点,可以考虑撤销或迁移部分监测点. #### 参考文献: - [1] 吴忠勇,程春明,吴波.大气环境监测优化布点方法[M]. 北京:中国环境科学出版社,1992.2-7. - [2] Zheng J, Swall J L, Cox W M, et al. Interannual variation in meteorologically adjusted ozone levels in the eastern United States: A comparison of two approaches [J]. Atmos Environ, 2007, 41(4):705-716. - [3] Kim S B, Temiyasathit C, Chen V C P, et al. Characterization of Spatially Homogeneous Regions Based on Temporal Patterns of Fine Particulate Matter in the Continental United States [J]. J Air Waste Manage Assoc, 2008, 58(7):956-975. - [4] 蒲文龙,郭守泉.主成分分析法在环境监测点优化中的应用 [J]. 煤矿开采,2004,9(4):6-7. - [5] Pires J C M, Sousa S I V, Pereira M C, et al. Management of air quality monitoring using principal component and cluster analysis-Part I: SO₂ and PM₁₀ [J]. Atmos Environ, 2008, 42(6): 1249-1260. - [6] Pires J C M , Sousa S I V , Pereira M C , et al. Management of air quality monitoring using principal component and cluster analysis-Part II : CO , NO₂ and O₃[J]. Atmos Environ , 2008 , 42(6): 1261-1274. - [7] Lu H C , Chang C L , Hsieh J C. Classification of PM_{10} - distributions in Taiwan [J]. Atmos Environ , 2006 , 40(8): 1452-1463. - [8] Grivas G, Chaloulakou A, Kassomeos P. An overview of the PM₁₀ pollution problem, in the Metropolitan area of Athens, Greece. Assessment of controlling factors and potential impact of long range transport [J]. Sci Total Environ, 2008, 389(1): 165-177. - [9] Giri D , Murthy V K , Adhikary P R , et al. Cluster analysis applied PM₁₀ concentration data for determination of sources and spatial patterns in ambient air-quality of Khatmandu Valley [J]. Curr Sci , 2007 , 93(5):684-688. - [10] Tarasova O A , Brenninkmeijer C A M , Jockel P , et al. A climatology of surface ozone in the extra tropics cluster analysis [J]. Atmos Chem Phys , 2007 , 7(24):6099-6117. - [11] 冯治宇. 网格采样-聚类分析在优化环境监测点中的应用 [J]. 环境工程,2003,21(2):55-58. - [12] Gramscha E , Cereceda-Balicb F , Oyolac P , et al. Examination of pollution trends in Santiago de Chile with cluster analysis of PM₁₀ and Ozone data [J]. Atmos Environ , 2006 , 40 (28) : 5464-5475. - [13] Pittau M G , Romano D , Cirillo M C , et al. An optimal design for air pollution monitoring networks [J]. Environmetrics , 1999 , 10(3):351-360. - [14] Rizzo M J , Scheff P A. Assessing ozone networks using Positive Matrix Factorization [J]. Environ Prog , 2004 , 23 (2): 110-119. - [15] 宋宇,唐孝炎,方晨,等. 北京市大气细粒子的来源分析 [J]. 环境科学,2002,23(6):11-16. - [16] Bhanuprasad S G , Venkataraman C , Bhushan M. Positive matrix factorization and trajectory modelling for source identification : A new look at Indian Ocean Experiment ship observations [J]. Atmos Environ , 2008 , 42(20):4836-4852. - [17] Xie S D , Liu Z , Chen T , et al. Spatiotemporal variations of ambient PM10 source contributions in Beijing in 2004 using positive matrix factorization [J]. Atmos Chem Phys , 2008 , 8 (10) : 2701-2716. - [18] Jaeckels J M , Bae M S , Schauer J J. Positive matrix factorization (PMF) analysis of molecular marker measurements to quantify the sources of organic aerosols [J]. Environ Sci Technol , 2007 , 41(16):5763-5769. - [19] Song Y , Zhang Y H , Xie S D , et al. Source apportionment of PM_{2.5} in Beijing by positive matrix factorization [J]. Atmos Environ , 2006 , 40(8):1526-1537. - [20] Paatero P , Tapper U. Positive matrix factorization: a nonnegative factor model with optimal utilization of error estimates of data values [J]. Environmetrics , 1994 , 5(2):111-126. - [21] Paatero P, Hopke P K, Song X H, et al. Understanding and controlling rotations in factor analytic models [J]. Chemometr Intell Lab, 2002, 60(1-2):253-264. - [22] Paatero P. User 's guide for positive matrix factorization programs PMF2 and PMF3 Part 1:tutorial [M]. 2004. [23] 荆俊山,傅冈,陈栋. 北京市大气悬浮颗粒物 TSP 和 PM₁₀的 - 季节变化特征[J]. 中国海洋大学学报,2008,38(4):539-541. - [24] 王玮,王英,苏红梅,等. 北京市沙尘暴天气大气气溶胶酸 度和酸化缓冲能力[J]. 环境科学,2001,**22**(5):25-28. - [25] Sun Y L , Zhuang G H , Wang Y , et al. The air-borne particulate pollution in Beijing-concentration , composition , distribution and sources [J]. Atmos Environ , 2004 , 38(35):5991-6004. - [26] Pereira M C , Alvim-Ferraz M C M , Santos R C. Relevant aspects of air quality in Oporto (Portugal): PM₁₀ and O₃[J]. Environ Monit Assess , 2005 , 101(1-3): 203-221. - [27] 段欲晓,徐晓峰. 北京地区 SO_2 污染特征及气象条件分析 [J]. 气象科技,2001,29(4):11-15. - [28] Gramscha E , Cereceda-Balicb F , Oyolac P , et al. Examination of pollution trends in Santiago de Chile with cluster analysis of PM ₁₀ and Ozone data [J]. Atmos Environ , 2006 , **40**(28): 5464-5475. - [29] 贺克斌, 贾英韬, 马永亮, 等. 北京大气颗粒物污染的区域性本质[J]. 环境科学学报, 2009, 29(3):482-487. - [30] Song Y , Zhang M N , Cai X H. PM₁₀ modeling of Beijing in the winter [J]. Atmos Environ , 2006 , 40(22):4126-4136. - [31] Xie S D , Yu T , Zhang Y H , et al. Characteristics of PM_{10} , SO_2 , NO_x and O_3 in ambient air during the dust-storm period in Beijing [J]. Sci Total Environ , 2005 , **345**(1-3):153-164. - [32] 李令军,高庆生. 2000年北京沙尘暴源地解析[J]. 环境科学研究,2001,14(2):1-4. - [33] 任晰,胡非,胡欢陵,等. 2000-2002 年沙尘现象对北京大气中 PM₁₀质量浓度的影响评估[J]. 环境科学研究,2004,**17** (1):51-59.