聚糖原菌富集实验及其内源过程探究

王啟林,郝晓地*,曹亚莉

(北京建筑工程学院城市雨水系统与水环境省部共建教育部重点实验室,可持续环境生物技术研发中心,北京 100044) 摘要:细胞衰减是微生物内源过程的一个重要组成部分,可分为由细胞死亡引起的数量衰减和由细胞活性降低引起的活性衰 减两部分.通过挥发性脂肪酸(VFA)吸收速率(VFAUR)测定、荧光原位杂交技术(FISH)以及 LIVE/DEAD 细胞染色技术,研 究了富集聚糖原菌(CAOs)在序批式反应器(SBR)系统中好氧环境下的衰减特征.结果表明,当*T* = 30℃、进料中*m*(COD): *m*(P) = 100 时,SBR系统中 GAOs 富集比例达 94%.测定和计算表明,SBR 富集系统中 GAOs 衰减速率和死亡速率分别为 0.132 d⁻¹和 0.034 d⁻¹,其数量衰减和活性衰减占其细胞总衰减比例分别为 26% 和 74%.可见,GAOs 数量衰减只占其细胞总 衰减中很小一部分,而绝大部分衰减由活性衰减所引起.

关键词:内源过程;细胞衰减;细胞死亡;活性衰减;挥发性脂肪酸(VFA)吸收速率(VFAUR);荧光原位杂交(FISH);LIVE/ DEAD 染色

中图分类号:X172 文献标识码:A 文章编号:0250-3301(2011)04-1034-08

Enriched Experiment and Endogenous Processes of Glycogen-Accumulating Organisms (GAOs)

WANG Qi-lin, HAO Xiao-di, CAO Ya-li

(Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, R & D Centre for Sustainable Environmental Biotechnology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

Abstract: Cell decay is an important part of microbiological endogenous processes, which consists of cell death (reduction in the amount of active bacteria) and activity decay (reduction in the specific activity of active bacteria). By means of measuring maximal anaerobic volatile fatty acid (VFA) uptake rates (VFAUR), analyzing 16S rRNA with fluorescence *in-situ* hybridization (FISH) and observing membrane integrity by live/dead staining, the aerobic decay characteristics of glycogen-accumulating organisms (GAOs) in an enriched GAOs sequencing batch reactor (SBR) system were investigated. It was experimentally identified that a highly enriched culture of GAOs (94%) was obtained by maintaining the temperature at 30°C in the SBR and a high m (COD): m (P) at 100 in the feed. The experimental results and calculations revealed that the decay and death rates of GAOs were 0.132 d⁻¹ and 0.034 d⁻¹ respectively, which demonstrated that cell death and activity decay accounted for respective 26% and 74% of the total GAOs cell decay. For this reason, cell death was only a minor factor causing the cell decay of GAOs, and activity decay was mostly responsible for this process.

Key words: endogenous processes; cell decay; cell death; activity decay; volatile fatty acid (VFA) uptake rate (VFAUR); fluorescence *in-situ* hybridization (FISH); LIVE/DEAD staining

所谓内源过程,是指细菌内部代谢过程以及细菌之间、细菌同高等微生物、病毒之间相互作用过程,包括内源呼吸、细胞维持、死亡-再生(隐性生长)以及由于高等微生物捕食、病毒感染和其它因素(如,饥饿、毒性物质和自身衰亡等)所造成的细胞衰减等^[1-5],这些过程通常会对活性污泥系统备个方面造成影响.内源过程影响活性污泥系统微生物群落、系统处理能力、效率和稳定性.因此,深入认识微生物内源过程对优化系统运行具有举足轻重的作用.细胞衰减是微生物内源过程的一个重要组成部分,由于其具有与系统中生物量多寡直接相关的特点,故而日益受到人们的关注.

所谓细胞衰减,是指那些能够引起生物体总量 减少或导致生物体活性降低的过程,可分为由细胞 死亡引起的数量衰减和由细胞活性降低引起的活性 衰减两部分^[1,5,6].近年来,随着生物营养物去除 (BNR)工艺的应用,对细菌衰减速率测定,特别是 对与营养物去除密切相关的硝化细菌(氨氧化细 菌:AOB;亚硝酸盐氧化细菌:NOB)与聚磷菌 (PAOs)衰减速率的测定,越来越受到专家学者的重 视.由于聚糖原菌(GAOs)能与 PAOs 在厌氧条件下 争夺有机底物,继而影响 PAOs 的好氧/缺氧吸磷过

收稿日期:2010-04-16;修订日期:2010-06-18

基金项目:国家自然科学基金项目(50678017);2010年北京市属高等学校人才强教深化计划高层人才项目(PHR20100508)

作者简介:王啟林(1984~),男,硕士研究生,主要研究方向为微生物内源过程与污泥减量,E-mail: wangqilin666@ yahoo. com. cn

^{*} 通讯联系人, E-mail: haoxiaodi@ bucea. edu. cn

程^[7,8],因此,除磷系统中 GAOs 的存在可能导致除 磷效果恶化、甚至崩溃.已有研究表明,强化生物除 磷系统(EBPR)中 GAOs 滋生是引起系统运行不稳 定的主要原因之一^[8-11].为此,研究 GAOs 的内源特 征,测定其衰减速率十分必要.

目前,已有研究人员对硝化细菌和 PAOs 的衰 减速率进行过实验测定^[3,6,12-15],而对 GAOs 而言, 虽然许多研究人员也已经通过数学模型校正方法得 到了其衰减速率校正值^[16-18],但是,由于缺乏适当 方法,目前几乎还没有研究人员对其进行过实验测 定.显然,对 GAOs 衰减速率认识不足将会成为今后 EBPR 运行优化的障碍,特别是当数学模拟技术已 成为当今运行优化的一种强有力工具的情况下.

在活性污泥系统中,饥饿状态是引起细胞衰减 的一个主要原因. 在饥饿状态下,细菌细胞通常会采 用一些方式应对这种不利的生存状态. 细菌可能会 调整自身代谢过程,降低活性以减少维持能量需求, 于是,出现活性衰减现象(紧迫反应)^[19,20]. 细菌也 可能会启动程序化细胞死亡(PCD),以维持部分细 菌细胞的活性,从而避免整个种群在竞争中失去优 势,呈现出数量衰减的特征^[21]. 同时,活性污泥系统 中高等微生物捕食、病毒感染以及其它因素(如,温 度、pH 和毒性物质等)也会对细菌生存和活性造成 一定影响^[1~5].

然而,细菌究竟以哪种应对方式为主,或者细菌 是同时利用、还是顺序利用这些应对方式?这些问题目前均尚不明确.为弄清这些问题,就必须对细菌 衰减特征进行实验研究和定量分析.对 GAOs 而言, 首先是如何获得对它们的富集培养.本研究首先利 用厌氧-好氧序批式反应器(SBR)系统,通过控制温 度与进料中 COD: P 比值,成功对 GAOs 进行了富集 培养.在获得纯度较高 GAOs 的基础上,采用挥发性 脂肪酸(VFA)吸收速率(VFAUR)测定、荧光原位杂 交技术(FISH)以及 LIVE/DEAD 细胞染色技术,对 GAOs 在好氧环境下的衰减速率进行了实验测定. 同时,计算分析了 GAOs 分别因细胞死亡引起之数 量衰减和因细胞活性降低引起的活性衰减在其细胞 总衰减中所占比例,以期加深对活性污泥系统中 GAOs 衰减特征的认识.

1 材料与方法

1.1 GAOs 富集 SBR 系统

GAOs 富集培养系统为一厌氧-好氧交替工作的 SBR 系统.SBR 反应器总体积 5 L,工作体积 4 L,工 作周期6h,每天4个运行周期.一个运行周期分进 料(5 min)、厌氧反应(125 min)、好氧反应(158 min)、排泥(2 min)、沉淀(60 min)和排水(10 min)6 个阶段.进料阶段,反应器内搅拌叶轮开始搅拌(搅 拌速度150 r/min);在泥水保持充分混合状态下,2 L人工配水由蠕动泵抽入反应器.厌氧环境由微生 物即时消耗水中溶解氧(DO)实现;为防止厌氧反应 过程中空气进入反应器,反应器需进行特殊密封处 理.在好氧反应阶段,进气阀由计算机控制自动打开 曝气,曝气量为2L·min⁻¹.排泥阶段,每个周期约排 出83 mL混合液,使该系统污泥龄(SRT)保持在12 d.该系统运行时的水力停留时间(HRT)为12 h.

GAOs 富集 SBR 系统运行中所有阶段都通过水 浴设备自动控温,温度被维持在(30±0.5)℃,以使 GAOs 更好富集^[22].系统内安装有 pH 和 DO 电极. 系统 pH 被控制在 7±0.05.当 pH 因混合液发生反 应而变化时,系统会根据电极感应信号在计算机控 制下 自动加入适量 0.5 mol·L⁻¹ NaOH 和 0.5 mol·L⁻¹ HCl 溶液,以维持系统内基本恒定的 pH. DO 电极用于监控反应器内 DO 变化;厌氧阶段 DO ≤0.1 mg·L⁻¹,好氧阶段 DO≥3 mg·L⁻¹.系统中以 上所有这些在线检测数据都由控制计算机记录、 存档.

GAOs 富集 SBR 系统接种污泥来自于实验室内 一小试规模 BNR 系统. 实验进水采用人工配水. 因 为进水中的铵离子(NH4)会被氧化为亚硝酸盐 (NO_2^-) 和硝酸盐 (NO_3^-) ,并由此破坏系统厌氧条 件,所以,在进水中添加了硝化抑制剂(ATU),以抑 制硝化反应的发生.此外,由于 K_2 HPO₄ 与 KH_2 PO₄ 会与 Ca²⁺ 和 Mg²⁺ 发生反应,故进料必须分为2 部 分投加:1L溶液 A和1L溶液 B,具体进水组成如 表1所示.其中,COD 进水浓度为800 mg·L⁻¹,P进 水浓度为8 mg·L⁻¹,这就使得进水m(COD): m (P) = 100,为 GAOs 富集培养创造了第2种必要 环境条件^[23,24]. GAOs 富集 SBR 系统在污泥接种约 120 d 后达到稳态运行.此时,混合液悬浮固体 (MLSS)浓度为(3120 ± 40) mg·L⁻¹, VFA、糖原 (Gly)等在多个运行周期内的各自浓度变化曲线趋 于一致,预示着 GAOs 富集培养成功.

1.2 衰减实验与衰减速率测定

衰减实验开始后,SBR反应器停止进料、厌氧反应、排泥、沉淀和排水等过程,系统一直维持在好氧曝气状态,曝气量、温度和 pH 与系统原运行条件一致,使之用作一种衰减反应器.由于衰减反应器因素

表1(GAOs 冨集 SBR 系统进水组成/	mg · L ⁻
------------------------	---------------------

enriched GAOs system/mg·L $^{-1}$					
滋冻	ホ 月二末1)	质量	※日二末1)	质量	
俗被	太重兀系"	浓度	似重兀 系 ⁷	浓度	
	$NaAc \cdot 3H_2 O$	1 700	EDTA	6	
	$\rm NH_4Cl$	106.5	$\mathrm{FeCl}_3\boldsymbol{\cdot}\mathbf{6H}_2\mathrm{O}$	0.9	
	$MgSO_4 \cdot 7H_2O$	171	H_3BO_3	0.09	
	$CaCl_2 \cdot 2H_2O$	79.5	$CuSO_4 \cdot 5H_2O$	0.018	
А	硝化抑制剂(ATU)	60	KI	0.108	
	蛋白胨	24	$MnCl_2 \cdot 4H_2O$	0.072	
	酵母浸膏	1.95	$NaMoO_4 \cdot 2H_2O$	0.036	
			ZnSO ₄ ·7H ₂ O	0.072	

CoCl·6H, O

0.09

Table 1 Composition of the synthetic influent for the

	1)	宏量元素	和微量元素	用去离子	水溶解
--	----	------	-------	------	-----

K₂HPO₄

KH, PO4

В

发会引起水分散失,所以,衰减实验开始后每天都要 给系统补充水分,以维持系统内混合液体积相对恒 定.对衰减反应器曝气约6h后,污泥便进入内源呼 吸状态,可以开始对污泥进行衰减速率测定.

20.4

16

GAOs 衰减速率依靠测定衰减过程中最大 VFAUR变化速率来确定,测定装置如图 1 所示.在 衰减实验伊始(0 d)、1 d、3 d、5 d 和 7 d,分别从衰 减反应器中取出 590 mL 泥样,加入图 1 所示的锥形 瓶(1 L)中. 然后,向锥形瓶中通入氮气(约 10 min),使锥形瓶中泥样处于完全厌氧环境.之后,向 锥形瓶中加入 10 mL 高浓度 NaCH₃COO·3H₂O 溶 液,使锥形瓶中 COD 浓度瞬间达到 200 mg·L⁻¹ (即,保持与 SBR 系统进料后相同的 COD 浓度).随 后,从锥形瓶中每隔 3 分钟取 20 mL 泥样进行 VFA 测定,总共取样 6 次.

需要注意的是, PAOs 也能在厌氧条件下吸收 VFA,即,会对 GAOs 吸收 VFA 测定结果产生影响. 正因如此,实验才需要首先获得纯度较高的 GAOs 富集培养,尽可能避免富集污泥中出现 PAOs.

根据在衰减过程中测定所得 VFAUR,依据公式 (1)^[25]和线性回归方法,即可确定出 GAOs 的衰减 速率.

$$b = -\ln\frac{R_{t}}{R_{0}} \times \frac{1}{t_{d}} \tag{1}$$

式中,b表示 GAOs 衰减速率(d^{-1}); R_1 表示泥样衰减 后最大 VFAUR [$mg \cdot (L \cdot h)^{-1}$]; R_0 表示泥样衰减前 最大 VFAUR [$mg \cdot (L \cdot h)^{-1}$]; t_d 表示衰减时间(d).

本研究所采用的衰减速率测定方法是目前国内 外最常用的方法^[3,12,15].然而,此衰减速率是在细菌 处于7d的饥饿状态条件下所测定的.显然,这与活

图 1 GAOs 衰减速率测定装置

Fig. 1 Device for measuring the decay rate of GAOs

性污泥系统中细菌的实际生存条件存在着一定差 异,因为实际活性污泥系统中细菌一般不可能在如 此长的时间内处于内源状态.所以,本研究所测定的 衰减速率可能与实际活性污泥系统中 GAOs 原位衰 减速率存在一定差异^[26,27].

1.3 分析方法

MLSS 根据泥样在 $105 \degree$ 下烘干后的总残渣确 定^[28];混合液挥发性悬浮固体浓度(MLVSS)则在泥 样总残渣基础上,继续用 $550 \degree$ 高温分解有机物后 确定^[28];磷酸盐($PO_4^{3-}-P$)按钼锑抗分光光度法测 定^[28];VFA 采用 5 点滴定法测定^[29];Gly 依据蒽酮 法测定^[30].

1.4 荧光原位杂交(FISH)实验

荧光原位杂交(FISH)被用于确定 GAOs 富集 SBR 系统中 GAOs 所占比例^[36].首先,测试泥样用 4%多聚甲醛固定 2 h;再对固定后的泥样离心,并在 1×PBS 中重新悬浮(重复 3 次).然后,对泥样进行 机械破碎,将破碎泥样滴加在明胶包被的载玻片上, 用 50%、80%和 98%酒精分别浸泡 3 min.将荧光标 记的寡核苷酸探针(见表 2)溶解于杂交缓冲液中 [组成:0.9 mol·L⁻¹ NaCl,0.02 mol·L⁻¹ Tris-HCl (pH = 7.4),0.01% SDS 和 35% 去离子甲酰胺 (DFA)],在 46℃下与污泥样品杂交 2 h.杂交结束 后,采用清洗液[组成:0.005 mol·L⁻¹ EDTA(pH = 8.0),0.02 mol·L⁻¹ Tris-HCl(pH = 7.2),0.01% SDS 和 0.9 mol·L⁻¹ NaCl]在 48℃下洗脱 20 min.最 后,对每个污泥样品用荧光显微镜(Zeiss Axioskop 40)随机拍照并进行定量分析.

表 2 寡核苷酸探针¹⁾ Table 2 16S rRNA targeted oligonucleotide probes

探针	序列(5'-3')	特异性	5′标记	文献
EUB338- I	GCTGCCTCCCGTAGGAGT	Bacteria	FITC	[31]
EUB338- I	GCAGCCACCCGTAGGTGT	Bacteria	FITC	[32]
EUB338- Ⅲ	GCTGCCACCCGTAGGTGT	Bacteria	FITC	[32]
GAO Q431	TCCCCGCCTAAAGGGCTT	Candidatus competibacter phosphatis	TAMRA	[33]
GAO Q989	TTCCCCGGATGTCAAGGC	Candidatus competibacter phosphatis	TAMRA	[33]
TFO_DF218	GAAGCCTTTGCCCCTCAG	D. vanus-related Alphaproteobacteria	TAMRA	[34]
TFO_DF618	GCCTCACTTGTCTAACCG	D. vanus-related Alphaproteobacteria	TAMRA	[34]
PAO 462	CCGTCATCTACWCAGGGTATTAAC	Candidatus Accumulibacter phosphatis	TAMRA	[35]
PAO 651	CCCTCTGCCAAACTCCAG	Candidatus Accumulibacter phosphatis	TAMRA	[35]
PAO 846	GTTAGCTACGGCACTAAAAGG	Candidatus Accumulibacter phosphatis	TAMRA	[35]

1) EUBmix (EUB338-Ⅰ、EUB338-Ⅱ和 EUB338-Ⅲ以体积比 1:1:1混合), GAOmix (GAOQ431 和 GAOQ989 以体积比 1:1混合), DEFmix (TFO_DF218 和 TFO_DF618 以体积比 1:1混合), PAOmix (PAO462、PAO651 和 PAO832 以体积比 1:1:1混合)

1.5 LIVE/DEAD 细胞活性实验

采用荧光染料对衰减过程中泥样染色,以确定 泥样衰减过程中活细菌细胞占总细菌细胞比例的变 化规律.具体方法参见文献[37].

2 结果与分析

2.1 GAOs 富集 SBR 系统稳态运行

GAOs 富集 SBR 系统达到稳态运行后, PO³⁻₄-P、VFA与Gly浓度变化曲线如图2所示.图2 显示,在厌氧阶段,当底物(VFA)进入反应器后,立 即被GAOs所吸收,GAOs细胞内Gly也得到了分解,但是,PO³⁻₄-P却几乎没有被释放;在好氧阶段, Gly被重新合成.这与典型GAOs生理、生化特征完 全一致.由此可以推断,GAOs在SBR系统中富集程 度极高,系统内PAOs因进水中P源不足以及中温 等不利环境条件被淘汰.这一结论也在后续FISH 测定结果中得到了定量证明(见2.3节).SBR系统 中极低的PAOs含量为GAOs衰减速率测定结果的 准确性提供了可靠的实验基础.

2.2 GAOs 衰减速率

GAOs 在好氧衰减过程中活性变化趋势见图 3.

图 3 显示, GAOs 的活性在整个衰减过程中呈 线性平稳下降.根据线性回归方法,可计算出 GAOs 在 7 d 衰减时间内衰减速率(含标准差)为(0.132 ±0.012)d⁻¹.这一数值与其它研究人员通过数学 模型校正获得的校正值(0.08~0.15d⁻¹)非常吻 合^[26-18].

2.3 FISH 实验结果

GAOs 富集 SBR 系统泥样 FISH 照片见图 4.

图 4 的 FISH 照片分析结果见图 5. 显而易见, 活 PAOs 在总活细菌中所占比例的确很低(<2%);

Candidatus competibacter phosphatis 构成 GAOs 的主要种属(>90%).根据统计学分析,在衰减过程中GAOs 的比例(Candidatus competibacter phosphatis + D. vanus-related Alphaproteobacteria)并没有显著变化(p>0.05).故此,基于图 5 可以计算出 GAOs 在 7 d

1037

(b) TAMRA标记DEFmix

(c) TAMRA标记PAOmix

图中 FITC 标记的探针 EUB338 mix为绿色,用于检测所有细菌,TAMRA 标记的探针为红色;黄色为 FITC 标记的探针 EUB338 mix与 TAMRA 标记的探针叠加后的颜色;(a) 用于检测 Candidatus competibacter phosphatis;(b) 用于检测 D. vanus-related Alphaproteobacteria; (c)用于检测 Candidatus Accumulibacter phosphatis

图 4 GAOs 富集 SBR 系统中泥样 FISH 图像

Fig. 4 FISH photos for the sludge samples of enriched GAO-SBR system

衰减时间内平均比例(含标准差)为(94±5)%,剩 余部分(6% ±5%)疑为常规异养菌(OHO)和极少 量的 PAOs.

the enriched GAO-SBR system

2.4 LIVE/DEAD 实验结果

GAOs 富集 SBR 系统典型泥样 LIVE/DEAD 显 微图像见图 6.

LIVE/DEAD 图像分析结果见图 7.

根据统计学分析,在衰减过程中 GAOs 富集 SBR 系统中活细胞比例呈下降趋势(p < 0.01).由 于系统中的生物量会因细胞衰减而减少,所以,本实 验对衰减过程中的 MLVSS 进行了测定.依据 MLVSS, FISH 以及 LIVE/DEAD 测定结果, 按公式 (2)^[14],可计算出 GAOs 富集 SBR 系统中 GAOs 在 衰减过程中的死亡规律,如图8所示.

 $X_{\text{Active-GAO}} = \text{MLVSS} \times \text{FISH}_\text{GAO} \times \text{Viable}$ (2) 式中, $X_{\text{Active-GAO}}$ 表示活 GAOs 浓度(mg·L⁻¹);

GAOs 富集 SBR 系统中典型泥样 LIVE/DEAD 显微图像 图 6 Fig. 6 LIVE/DEAD photos for the sludge samples

of GAO-SBR system

FISH_GAO表示活 GAOs 占总活生物量比例(%), 即,FISH 测定结果; Viable 表示活细菌占总细菌的

图 8 GAOs 衰减过程中死亡规律

Fig. 8 Decreasing trends in the concentrations of the viable GAOs during the decay experiment

(%),即,LIVE/DEAD 测定结果.

根据线性回归方法,可计算出 GAOs 富集 SBR 系统中 GAOs 死亡速率为(0.034±0.006) d⁻¹.

2.5 GAOs 数量衰减与活性衰减对比分析

根据所确定的 GAOs 衰减速率和死亡速率,即 可计算出 GAOs 数量衰减(细胞死亡)和活性衰减在 细胞总衰减中的贡献,如表 3 所示.

表 3 表明, GAOs 数量衰减只占其总衰减中较 小一部分,绝大部分衰减是由其活性衰减所引起的. GAOs 的这一内源特征显然是由其自身代谢方式特 点所致,或者说, GAOs 在内源过程初期主要采取紧 迫反应来应对不利环境条件, 程序化细胞死亡

表 3 GAOs 数量衰减与活性衰减占细胞总衰减的比

Table 3 Calculated fractio	s (with standard	errors) of cell death	and activity decay of GAOs
----------------------------	------------------	-----------------------	----------------------------

菌属	系统	数量衰减的比例 /%	计算方法	活性衰减的比例 /%	计算方法
GAOs	GAOs 富集 SBR	26 ± 5	$\frac{0.034 \pm 0.006}{0.132 \pm 0.012}$	74 ± 5	$1 - \frac{0.034 \pm 0.006}{0.132 \pm 0.012}$

(PCD)在内源过程初期并不是主要应对方式.此外, GAOs 在厌氧阶段外源底物充足时能够迅速贮存外 源底物,形成胞内聚合物(如 PHA).在随后好氧衰 减过程中,GAOs 也可以分解体内的 PHA、Gly 等物 质来获取细胞维持能量^[8-11].可见,上述综合因素 导致了 GAOs 在内源过程中衰减主要表现为活性的 降低而不是细胞死亡.

实验结果揭示出,目前大多有关细菌衰减研究 中因不能区分数量衰减与活性衰减而采用一个总衰 减系数表示细菌衰减的方法不够科学,应当予以修 正.例如,现有活性污泥数学模型将细胞衰减均假设 为由细胞死亡所引起^[38-41].可见,若不对模型参数 (衰减系数)适当修正,势必导致模拟结果与实际情 况出现一定偏差.

3 结论

(1)细胞衰减是微生物内源过程的一个重要组成部分,可分为由细胞死亡引起的数量衰减和由细胞活性降低引起的活性衰减2部分.目前,这一认识尚未得到污水生物处理技术在工程应用中的足够重视.

(2) 当 GAOs 富集 SBR 系统中 T = (30 ±
0.5)℃、pH 7 ± 0.05、进水m (COD):m (P) = 100
时,GAOs 可以达到 94% 的富集率.

(3)根据衰减过程中挥发性脂肪酸(VFA)吸收 速率(VFAUR)的变化、LIVE/DEAD和FISH定量分 析,确定出 GAOs 富集 SBR 系统中 GAOs 衰减速率 和死亡速率分别为 0.132 d⁻¹和 0.034 d⁻¹.

(4) GAOs 在内源过程中数量衰减与活性衰减 占其细胞总衰减比例分别为 26% 和 74%.可见, GAOs 数量衰减只占其细胞总衰减的较小一部分, 而绝大部分衰减是由活性衰减所引起的.

参考文献:

- Hao X D, Wang Q L, Zhu J Y, et al. Microbiological endogenous processes in biological wastewater treatment systems
 [J]. Critical Reviews in Environmental Science and Technology, 2010, 40(3):239-265.
- Lee N M, Welander T. Use of protozoa and Metazoa for decreasing sludge production in aerobic wastewater treatment
 [J]. Biotechnology Letter, 1996, 18(4):429-434.
- [3] Lopez C, Pons M N, Morgenroth E. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorous removal [J]. Water Research, 2006, 40(8):1519-1530.
- [4] Suttle C A. The significance of viruses to mortality in aquatic microbial communities [J]. Microbial Ecology, 1994, 28(2): 237-243.
- [5] Van Loosdrecht M C M, Henze M. Maintenance, endogenous respiration, lysis, decay and predation [J]. Water Science and Technology, 1999, 39(1):107-117.
- [6] Manser R, Gujer W, Siegrist H. Decay processes of nitrifying bacteria in biological wastewater treatment systems [J]. Water Research, 2006, 40(12):2416-2426.
- [7] Liu W T, Mino T, Nakamura K, et al. Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobicaerobic activated sludge with a minimized polyphosphate content

[J]. Journal of Fermentation and Bioengineering, 1994, 77(5):535-540.

- Liu W T, Mino T, Nakamura K, et al. Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal [J].
 Water Research, 1996, 30(1): 75-82.
- [9] Zeng R J, Van Loosdrecht M C M, Yuan Z, et al. Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems [J]. Biotechnology and Bioengineering, 2002, 81(1):92-105.
- [10] Oehmen A, Lemos P C, Carvalho G, et al. Advances in enhanced biological phosphorus removal: From micro to macro scale [J]. Water Research, 2007, 41(11):2271-2300.
- [11] Zhou Y, Pijuan M, Zeng R J, et al. Could polyphosphateaccumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs) ? [J]. Water Research, 2008, 42 (10-11):2361-2368.
- [12] Siegrist H, Brunner I, Koch G, et al. Reduction of biomass decay rate under anoxic and anaerobic conditions [J]. Water Science and Technology, 1999, 39(1):129-137.
- [13] Salem S, Moussa M S, Van Loosdrecht M C M. Determination of the decay rate of nitrifying bacteria [J]. Biotechnology and Bioengineering, 2006, 94(2):252-262.
- [14] Hao X D, Wang Q L, Zhang X P, et al. Experimental evaluation of decrease in bacterial activity due to cell death and activity decay in activated sludge [J]. Water Research, 2009, 43(14): 3604-3612.
- [15] Lu H, Keller J, Yuan Z. Endogenous metabolism of candidatus accumulibacter phosphatis under various starvation conditions
 [J]. Water Research, 2007, 41(20):4646-4656.
- [16] Manga J, Ferrer J, Garcia-Usach F, et al. A modification to the activated sludge model No. 2 based on the competition between phosphorus-accumulating organisms and glycogen-accumulating organisms [J]. Water Science and Technology, 2001, 43(11): 161-171.
- [17] Yagci N, Insel G, Artan N, et al. Modelling and calibration of phosphate and glycogen accumulating organism competition for acetate uptake in a sequencing batch reactor [J]. Water Science and Technology, 2004, 50(6):41-50.
- [18] Whang L M, Filipe C D M, Park J K. Model-based evaluation of competition between polyphosphate- and glycogen-accumulating organisms [J]. Water Research, 2007, 41(6):1312-1324.
- [19] Arbrige M, Chesbro W R. Very slow growth of Bacillus polymyxa: stringent responses and maintenance energy [J]. Archives of Microbiology, 1982, 132(4):338-344.
- [20] Lavallee B, Lessard P, Besser C. Decay rate variability of active heterotrophic biomass [J]. Water Science and Technology, 2002, 46(1-2):423-430.
- [21] Yarmolinsky M B. Programmed cell death in bacterial populations
 [J]. Science, 1995, 267(5199):836-837.
- [22] Lopez-Vazquez C M, Oehmen A, Hooijmans C M, et al. Modeling the PAO-GAO competition: Effects of carbon source,

pH and temperature [J]. Water Research, 2009, **43**(2):450-462.

- [23] Liu W T, Mino T, Nakamura K, et al. Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal [J]. Water Research, 1995, 30(1):75-82.
- [24] Mino T, Van Loosdrecht M C M, Heijnen J J. Microbiology and biochemistry of the enhanced biological phosphate removal process [J]. Water Research, 1998, 32(11):3193-3207.
- [25] Lesouef A, Payraudeau M, Rogalla F, et al. Optimizing nitrogen removal reactor configuration by on-site calibration of the IAWPRC activated sludge model [J]. Water Science and Technology, 1992, 25(6):105-123.
- [26] Vadivelu V M, Keller J, Yuan Z G. Stoichiometric and kinetic characterisation of *Nitrosomonas* sp. in mixed culture by decoupling the growth and energy generation processes [J]. Journal of Biotechnology, 2006, **126**(3):342-356.
- [27] Vadivelu V M, Yuan Z G, Fux C, et al. Stoichiometric and kinetic characterisation of Nitrobacter in mixed culture by decoupling the growth and energy generation processes [J]. Biotechnology and Bioengineering, 2006, 94(6):1176-1188.
- [28] APHA. Standard Methods for the Examination of Water and Wastewater [M]. Washington DC, America: American Public Health Association, 1995.
- [29] Moosbrugger R E, Wentzel M C, Ekame G A, et al. A 5 pH point titration method for determining the carbonate and SCFA weak acid/bases in anaerobic systems [J]. Water Science and Technology, 1993, 28(2):237-245.
- [30] Jenkins D, Richard M G, Daigge G T. Manual on the causes and control of activated sludge bulking and foaming [M]. Chelsea: Lewis Publishers, 1993.
- [31] Amann R I, Binder B J, Olson R J, et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial-populations [J]. Applied and Environmental Microbiology, 1990, 56(6):1919-1925.
- [32] Daims H, Bruhl A, Amann R, et al. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set [J]. Systematic and Applied Microbiology, 1999, 22(3):434-444.
- [33] Crocetti G R, Banfield J F, Keller J, et al. Glycogen accumulating organisms in laboratory-scale and full-scale activated sludge process [J]. Microbiology, 2002, 148:3353-3364.
- [34] Wong M T, Tan F M, Ng W J, et al. Identification and occurrence of tetrad-foaming Alphaproteobacteria in anaerobicaerobic activated sludge processes [J]. Microbiol-SGM, 2004, 150:3741-3748.
- [35] Crocetti G R, Hugenholtz P P, Bond P L, et al. Identification of polyphosphate-accumulating organisms and design of 16S rRNAdirected probes for their detection and quantitation [J]. Applied and Environmental Microbiology, 2000, 66(3):1175-1182.

- [36] Amann R I. In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes [M].
 Molecular Microbial Ecology Manual. Netherland: Kluwer Academic Publishers, 1995. 1-15.
- [37] 郝晓地,朱景义,曹秀芹,等. 污水生物处理系统细菌衰减 特性的实验研究[J]. 环境科学,2008,29(11):3104-3109.
- [38] Henze M, Grady C P L, Gujer W, et al. Activated Sludge Model No. 1 [R]. IAWPRC Scientific and Technical Report, No. 1, IAWPRC, London. ISSN: 1010-707X, 1987.

- [39] Henze M, Guyer W, Mino T, et al. Activated sludge model No. 2d, ASM 2D [J]. Water Science and Technology, 1999, 39 (1):165-182.
- [40] Gujer W, Henze M, Mino T, et al. The activated sludge model No. 2: biological phosphorus removal [J]. Water Science and Technology, 1995, 31(2):1-11.
- [41] Gujer W, Henze M, Mino T, *et al.* Activated sludge model No.
 3 [J]. Water Science and Technology, 1999, **39** (1): 183-193.