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a b s t r a c t

Arsenic in the environment is attracting increasing attention due to its chronic health effects. Although
arsenite (As(III)) is generally more mobile and more toxic than arsenate (As(V)), reducing As(V) to
As(III) may still be a means for decontamination, because As(III) can be removed from solution
by precipitation with sulfide or by adsorption or complexation with other metal sulfides. The
performance of As(V) bio-reduction under autohydrogenotrophic conditions was investigated with
batch experiments. The results showed that As(V) reduction was a biochemical process while both
acclimated sludge and hydrogen were essential. Most of the reduced arsenic remained in a soluble
form, although 20% was removed with no addition of sulfate, while 82% was removed when sulfate
was reduced to sulfide. The results demonstrated that the reduced arsenic was re-sequestered in the
precipitates, probably as arsenic sulfides. Kinetic analysis showed that pseudo first-order kinetics
described the bio-reduction process better than pseudo second-order. In particular, the influences of
pH and temperature on As(V) reduction by acclimated sludge under autohydrogenotrophic conditions
and total soluble As removal were examined. The reduction process was highly sensitive to both pH
and temperature, with the optimum ranges of pH 6.5–7.0 and 30–40°C respectively. Furthermore,
Arrhenius modeling results for the temperature effect indicated that the As(V) reduction trend was
systematic. Total soluble As removal was consistent with the trend of As(V) reduction.

Introduction

Arsenic, a known carcinogen in humans, is often found
in contaminated groundwater as a result of weathering
of rocks, industrial waste discharges, agricultural use of
arsenical herbicides and pesticides, etc. (Bhumbla and
Keefer, 1994). Exposure to arsenic-contaminated drink-
ing water has caused serious health problems in various
countries, including Japan (ATSDR, 2002), Bangladesh
(Wasserman et al., 2004), Shanxi Province, China (Wang
et al., 2007) and Bengal (Guha et al., 2004). Because of the
health effects of arsenic, most countries in the world have
adopted the guideline of 10 µg/L for public water systems
(WHO, 2001).

∗Corresponding author. E-mail: siqingxia@gmail.com

Arsenic is a metalloid (or inorganic semi-conductor) that
can occur with oxidation states of -3, 0, +3, and +5. The
As(V) and As(III) forms are the most common in natural
waters (Cullen and Reimer, 1989; Jekel, 1994). The ratio
of the concentrations of As(V) and As(III) is controlled
primarily by redox potential and pH (Tallman and Shaikh,
1980; Vance and Jacobs, 1995). At pH values of most
natural waters and under reducing conditions, As(III) is
present as non-ionic arsenious acid (H3AsO3). On the
other hand, As(V) dominates under oxidizing conditions
and is mainly present in the oxyanionic forms (H2AsO−4 ,
HAsO2−

4 ) (Cullen and Reimer, 1989b; Smedley et al.,
1996; Yan et al., 2000).

Physical and chemical methods are the main treatment
processes for arsenic-contaminated water, including anion
exchange (Korngold et al., 2001; Vagliasindi and Ben-
jamin, 1998), reverse osmosis (US EPA, 1999), chemical
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precipitation (Borho and Wilderer, 1996; Wickramasinghe,
2004; Tipping, 1981; Meng et al., 2002) and adsorption
(Soner et al., 2002; Guha and Chaudhuri, 1990). In addi-
tion to physical and chemical methods, the activated sludge
process and use of bacteria algal symbionts were two typi-
cal biosorption methods for arsenic removal (Goldstone et
al., 1990; Jahan et al., 2006). In terms of microbial pro-
cesses, Luo et al. (2008) reported one of sulfate-reducing
bacteria that can reduce sulfate to sulfide as well as As(V)
to As(III), so that arsenic can be effectively removed as As-
sulfide insoluble precipitate. Lim et al. (2008) studied the
iron-reducing bacterium Shewanella sp., which can reduce
As(V) to As(III) with an organic electron donor. The ability
of sulfate-reducing bacteria to reduce arsenic as well as
other metals and metalloids has been well documented
(Jong and Parry, 2003; Simonton et al., 2000).

The bio-reduction of As(V) can occur with a num-
ber of different electron donors. Many researchers have
used organic electron donors, such as acetate, lactate,
pyruvate, butyrate, and ethanol (Luo et al., 2008; Lim
et al., 2008; Jong and Parry, 2003; Oremland et al.,
1994; Dowdle et al., 1996; Macy et al., 1996; Newman
et al., 1997a, 1997b; Blum et al., 1998; Harrington et
al., 1998; Stolz and Oremland, 1999). Nevertheless, using
an organic electron donor not only significantly increases
excess sludge production, but also involves handling of
chemicals that are expensive (Xia et al., 2009). Compared
with organic electron donors, H2 shows advantages as
an ideal electron donor, including nontoxicity and lower
production of excess biomass (Rittmann et al., 2004).
Many oxidized contaminants can be reduced to less toxic
or less mobile species by acclimated microorganisms un-
der autohydrogenotrophic conditions (Nerenberg, 2005).
The classical example is nitrate, which can be reduced to
nitrite and nitrogen gas stepwise (Nerenberg and Rittman,
2004). Recently, more and more oxidized contaminants
were shown to be reduced. For instance, bromate (BrO−3 )
can be reduced to Br− ion (Downing and Nerenberg, 2007);
selenate (SeO2−

4 ) can be reduced to less mobile elemental
selenium (Se◦) (Chung et al., 2006a); and chromium can
be reduced from hexavalent chromate (CrO2−

4 ) to less toxic
Cr3+, which precipitates as Cr(OH)3 and is removed from
solution (Chunget al., 2006b).

In this article, we mainly investigated the feasibility of
arsenate bio-reduction by acclimated sludge under auto-
hydrogenotrophic conditions, as well as its kinetics. The
effects of some key factors like pH and temperature on the
bio-reduction process were explored. The precipitate was
analyzed to determine whether the reduced arsenate was
precipitated.

1 Materials and methods

1.1 Experimental setup

Plastic physiologic saline bottles with the effective volume
of 250 mL were used as the reactors. The cap was butyl
synthetic rubber, with air tightness, and the solution vol-
ume was 200 mL, including feed medium and inoculation
sludge. Stock solution was added into the reactor with a
sterile syringe. Residual air in the reactor was expelled
through a syringe needle, and hydrogen was injected
through another needle linked to a hydrogen tank. The
reactor was covered with aluminum foil and incubated on
a shaking table at 160 r/min. Each time after sampling, any
residual air in the bottles was expelled, and new hydrogen
gas was injected to ensure adequate supplies of hydrogen
through the reaction process.

1.2 Feed medium and stock solution

The composition of the feed medium was as follows:
(in g/L) NaNO3 0.060, NaHCO3 0.016, Na2HPO4·12H2O
4.441, KH2PO4 1.035, FeSO4·7H2O 0.001, CaCl2·2H2O
0.001; and (in mg/L) ZnSO4·7H2O 0.013, H3BO3 0.038,
CuCl2·2H2O 0.001, Na2MoO4·2H2O 0.004, MnCl2·4H2O
0.004, CoCl2·6H2O 0.025, NiCl2·6H2O 0.001. Nitrate, as
the most common pollutant in groundwater, was added to
cultivate the microorganisms. NaHCO3 was added as an
inorganic carbon source for the microorganisms and phos-
phate buffer (KH2PO4 + Na2HPO4) was used to prevent
any sharp pH rise, since denitrification and the reduction
of sulfate as well as arsenate may cause a significant rise
of pH value. All feed media were purged with N2 gas
to eliminate dissolved O2. The pentavalent arsenic stock
solution contained deionized water with 1000 mg/L of
As(V) (from Na3AsO4·12H2O).

1.3 Inoculum, starting up, and feasibility research

Anerobic sludge, as inoculation sludge, was obtained
from the anoxic pond of Quyang Sewage Treatment Plant
(Shanghai, China). The sludge concentration was about
3000 mg/L and the ratio of volatile suspended solids (VSS)
to suspended solids (SS) was 65%–70%. Inoculation
sludge (20 mL) was first rinsed three times with a sodium
phosphate buffer (KH2PO4 + Na2HPO4 + KCl + NaCl),
then added into the reactor, which contained the feed media
and 10 mg N/L nitrate to accumulate microorganisms.
Once nitrate and nitrite were completely removed, the
denitrification process, which was maintained for 24 hr,
was finished, and during the whole acclimation process the
pH did not change sharply due to the presence of phosphate
buffer (< 0.1 pH unit); then pentavalent arsenic stock
solution was added into the reactors. To investigate the
potential for bio-reducing As(V), a test group and four con-
trol groups were examined. The test group was investigated
with three replications, with starting As(V) concentrations
2 mg/L and sulfate 30 mg/L, to ensure the reliability of
results. The four control groups were investigated without
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inoculums, sulfate, arsenate and hydrogen (using nitrogen
instead), respectively, while other conditions were equal.
All groups were examined at pH 7.0 and 35°C.

1.4 Influencing factors

pH and temperature were considered to be two important
factors during the process. Previous results showed that
the optimum pH for autotrophic reduction of various
oxide contaminants was in the range of 7.0–8.2 (Lee and
Rittmann, 2003; Chung et al., 2006b). Furthermore, over
the past two decades, evidence has been mounting that
points to a missing sink for As(III) in various aquatic
and sedimentary environments (Aggett and O’Brein, 1985;
Moore et al., 1988; Kuhn and Sigg, 1993; Laverman et al.,
1995; Newman et al., 1997a) and demonstrated that the
stability of As2S3 was highly sensitive to small changes in
pH. In view of these findings, the initial pH was set to 6.0,
6.5, 7.0, 7.5, and 8.0, with starting As(V) concentration and
temperature at 2 mg/L and 35°C respectively. The temper-
ature can influence biochemical processes by enhancing
microbial activity. Taking into account the temperature
of groundwater, which is around 20°C, the experimental
temperatures were set to 10, 20, 25, 30 and 35 and
40°C with As(V) initial concentration 2 mg/L and pH 7.0.

1.5 Sampling and analysis

All the fluid samples were filtered with a 0.45 µm polyether
sulfone filter membrane (Anpel Company, Shanghai, Chi-

na) and kept in the refrigerator at 4°C. The samples were
divided into two portions. The pH of one portion (for As
analysis) was adjusted to below 2 by the addition of pure
sulfuric acid (to prevent oxidation of trivalent arsenic to
pentavalent arsenic) (Sato et al., 2002). The other portion
without treatment was analyzed to determine NO−3 -N,
NO−2 -N, and SO2−

4 , which was carried out by ion chro-
matography (ICS-1000, Dionex, USA) using an AS-20
column, an AG-20 precolumn, and a 150-mg/L injection
loop (Xia et al., 2011). Total soluble As was measured
by ICP-MS (Agilent Technologies 7700 Series, Japan)
and the different valence states of As were determined
by an LC-ICP-MS equipped with a CRC8 reversed-phase
column (Agilent, 3 µm diam. particles, 3 mm i.d. × 150
mm length) (Wolf et al., 2011). The pH was measured
with a pHS-29A meter (HACH, USA). SEM-EDS analyses
were performed by using an analytical scanning electron
microscope equipped with an energy dispersive spectrom-
eter (EDS) (XL30, Philips, Netherlands) according to the
manufacturer’s instructions.

2 Results and discussion

2.1 Feasibility of As(V) bio-reduction

Figure 1 summarizes the experimental results for the test
group and control groups. In the test group, hydrogen and
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Fig. 1 Dynamic change of total soluble As (a), As(III) (b), sulfate (c) and sulfide (d) in feasibility experiments.
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acclimated sludge were both provided, with As(V) 2 mg
As/L and sulfate initial concentration 30 mg/L. As shown
in Fig. 1a, the total soluble As concentration dropped from
2 mg/L to 0.37 ± 0.05 mg/L within 120 hr, while the
removal rate was 81.2% ± 2%. According to the results
from LC-ICP-MS, the residual arsenic was composed of
0.02 mg/L As(V) and 0.35 mg/L As(III), meaning that
the initial As(V) was reduced to As(III). Furthermore,
as shown in Fig. 1b, the As(III) concentration of the
test group samples increased stepwise, following a sharp
decrease to a steady-state by 48 hr, while the average
reduction rate of total soluble As reached as high as 0.80
± 0.01 mg/(L·day). The results also confirmed that As(V)
was converted to As(III) in the reaction process. As(V) was
depleted in the end, so the accumulation of As(III) did
not limit the reduction rate of As(V). The stoichiometry
of As(V) reduction to form As(III) with hydrogen as the
electron donor is shown as Eq. (1):

AsO3−
4 + H2 + 3H+ → H3AsO3 + H2O (1)

However, the As(III) detected in the test group was
much lower than the amount of reduced As(V), which
resulted in a larger net As removal (82%) in the presence
of sulfate reduction (Fig. 1c). The sulfide concentration
increased initially due to microbial reduction of sulfate, but
decreased later on. In the control group with no addition of
sulfate, Fig. 1a indicates a small total As removal (20%),
and once steady-state was reached, the total soluble As
concentration was 1.6 mg/L, much more than when sulfate
reduction occurred.

EDS analysis in the region Va = 18.0 kV was em-
ployed to determine the elemental compositions of the
precipitates after incubation. Precipitates were collected
on day 10 when the batch experiments finished. The
insoluble samples were rinsed three times with a sodium
phosphate buffer and air-dried (Bankar et al., 2009). The
EDS spectrum in Fig. 2 shows that the carbon, oxygen,
arsenic and elemental sulfur peaks were pronounced, with
weight percentages of 58.53%, 39.58%, 1.12% and 0.77%,
respectively. The results indicated that reduced arsenic
was probably precipitated with sulfide or by adsorption
or complexation with other metal-sulfides, which is con-

Element Weight (%) 
 

Atom (%)  
 

CK  58.53 65.98 

OK  39.58 33.50 

SK  0.77 0.32 

As L 1.12 0.20 

C

O

As

As As

S

Fig. 2 EDS analysis of the sediment from test group of feasibility
experiments.

sistent with results found by other investigators. They
reported that arsenic existed in the precipitate as orpiment
(As2S3) and realgar (AsS), and extensive X-ray absorption
near edge structure and thermodynamic modeling were
conducted to confirm the formation of arsenic sulfide
(Kocar et al., 2010; Onstott et al., 2011; Xu et al., 2011;
Battaglia-Brunet et al., 2012).

In this study, although the exact processes responsible
for arsenic removal are not clear, it is evident that when
compared to the control group containing no sulfate,
sulfate reduction can greatly enhance the total As removal
efficiency. Work is continuing to determine what mech-
anism is in fact responsible for As removal, including
secondary ion mass spectrometry or X-ray absorption near
edge structure studies.

In the control group with N2 instead of H2, the removal
percentage of total soluble As was about 6%, which
showed that microbial physical adsorption contributed a
small amount to As removal. That the As(III) concen-
tration was nearly zero in this group also illustrated this
point, meaning that As(V) could not be reduced by accli-
mated sludge without hydrogen as electron donor. When
there were no microbes present, the As(V) concentration
remained unchanged and the As(III) concentration was
nearly zero, which demonstrated that As(V) reduction was
a biochemical process. Neither As(V) nor As(III) were
detected in the control group with no addition of arsenate.

In summary, acclimated sludge and hydrogen were
essential. Once these conditions were available, the As(V)
reduction was feasible, and it is also recognized that there
was high total soluble As removal efficiency with addition
of sulfate, because As(III) can be removed from solution
by precipitation or complexation with sulfide.

2.2 Reduction kinetics

The kinetics of bio-reduction describes the rate of As(V)
reduction. In order to identify the mechanism and the
potential rate-controlling steps involved in the process of
bio-reduction, the data of As(V) reduction by autohydro-
gentrophic organisms was fitted using the Lagergren pseu-
do first-order and pseudo second-order models (Zubair et
al., 2008).

The linearized form of the pseudo first-order equation
can be expressed as Eq. (2):

ln(
Ct

C0
) = −k1t (2)

The pseudo second-order kinetic model can be expressed
in linear form as Eq. (3):

1
Ct
= k2t +

1
C0

(3)

where, C0 (mg/L) and Ct (mg/L) are the concentrations at
the initial condition and at time t (min), respectively, and
k1 (min−1) is the pseudo first-order rate constant, and k2
(L/(mg·min)) is the pseudo second-order rate constant.
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The coefficient of correlation (R2) for the pseudo first-
order kinetic model (R2 = 0.9555, k = –0.0407) is much
higher that for the pseudo second-order model (R2 =

0.8086, k = 0.0736). The result implied that the pseudo
first-order kinetic model better described the reaction ki-
netics than the pseudo second-order one. The results fitted
with the first-order model are shown in Fig. 3. Evidence
had been found that for most dissimilatory metal reduction
processes, first-order models were good and comparable
(Liu et al., 2002).

2.3 Effect of pH

The effect of solution pH on the As removal process was
investigated. In this research, at the end of the experiments,
the pH did not change sharply due to the presence of
phosphate buffer (< 0.2 pH units), so the pH change versus
time was ignored.

As shown in Fig. 4a, the As(V) reduction rate was
relatively higher at pH = 6.5 and 7.0 than at pH = 6.0, 7.5
and 8.0 under the same conditions. Steady-state reduction
of As(V) to As(III) was evident by 12 hr and the maximum

-2 0 2 4 6 8 10 12
-3

-2

-1

0

1

Time (hr)

ln
(C

t 
/C

0
)

Fig. 3 Pseudo first-order kinetic plots for As(V) reduction.

As(V) reduction rate reached as high as 0.16 mg/(L·hr)
at pH 7.0. Finally, As(V) concentrations all declined to
nearly zero at the different pH values. The results showed
that it was more suitable for As(V) reduction to control
the pH between 6.5–7.0. The results in Fig. 4b show that
the maximum total soluble As removal percentage took
place at pH 7.0, with a removal percentage above 85% and
concentration 0.29 mg/L. In contrast to As(V) reduction,
once total soluble As reached steady-state removal, the
total soluble As concentrations at pH = 6.5, and 7.0 (0.34
and 0.29 mg/L, respectively) were less than for pH = 6.0,
7.5 and 8.0 (0.49, 0.41, and 0.47 mg/L, respectively). As
a whole, the maximum removal percentage was obtained
between pH 6.5–7.0.

2.4 Effect of temperature

The influence of temperature on the biochemical reduction
of As(V) is shown in Fig. 5a. In summary, the As(V)
reduction rate was relatively faster at 30, 35 and 40°C after
36 hr the removal rates tended to balance with the reduc-
tion rates of 1.27, 1.29, and 1.31 mg/(L·day) respectively,
and As(V) reduction percentages were all above 95%.
When the temperature decreased to 20 or 25°C the per-
formance of the microbes was not good, for the reduction
rates were lower after 36 hr (0.80 and 1.17 mg/(L·day), re-
spectively). This demonstrated that low temperature could
possibly limit microbial metabolism and reduce its activity
so as to inhibit the bio-reduction of As(V) to As(III). It is
noteworthy that the As(V) concentration was fairly high at
the temperature of 10°C with the average reduction rate of
0.18 mg/(L·day). Furthermore, the removal curve of total
soluble As in Fig. 5b was consistent with the trend of
As(V) reduction. Since sulfate reduction was also inhibited
by lower temperature, total soluble As concentrations at
10 and 20°C (1.72 and 1.32 mg/L, respectively) were
much higher than at 25, 30, 35 and 40°C (0.48, 0.50, 0.39
and 0.39 mg/L, separately) once total soluble as removal
achieved steady-state.
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Fig. 4 Effect of solution pH on (a) As(V) reduction and (b) total soluble As removal.
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Fig. 5 Effect of temperatures on As (V) reduction (a), total soluble As removal (b) and Arrhenius modeling results for the temperate influence (c).

The results were also fitted with the Arrhenius model
as shown in Fig. 5c. The linearized form of the Arrhenius
equation is given as follows:

lnk = −Ea/RT + lnA (4)

where, k is the rate coefficient; Ea (J/(g·mole)) is the
activation energy; and T (K) is the absolute temperature
and A is the pre-exponential factor, which is the pre-
exponential constant, and it is 1.79 ×106 in this study.
Clearly, As(V) reduction was sensitive to temperature and
the trend was systematic.

As a whole, a high As(V) reduction rate can be
achieved between 30–40°C and the optimum temperature
was 40°C in the researched range. Furthermore, the reduc-
tion process would be inhibited below 30°C. The results
demonstrated that higher temperature, which could main-
tain higher microbial activity, led to a faster reduction rate.
Consequently, in actual operations the temperature range
should be kept above 25°C to accelerate the biochemical
reduction process.

3 Conclusions

The present article investigated the bio-reduction of As(V)
to As(III) by acclimated sludge and total soluble As
removal from synthetic groundwater when sulfate re-
duction occurred. First, feasibility research demonstrated
that As(V) reduction was a biochemical process while
acclimated sludge and hydrogen were essential. Secondly,
As(III) was detected and most of the reduced arsenic
remained in a soluble form, although 20% was removed
with no addition of sulfate, while 82% was removed when
sulfate reduction occurred. The results showed that As(V)
was first reduced to As(III) and then precipitated in the re-
actor, probably as arsenic sulfides, which was also verified
by EDS of the sediment. It was observed that there was
high total soluble As removal efficiency with addition of
sulfate. Kinetic analysis showed that the pseudo first-order
kinetic model better described the bio-reduction process

than the pseudo second-order model. Thirdly, research on
influencing factors indicated the reduction process was
highly sensitive to both pH and temperature, with the
optimum ranges of pH 6.5–7.0 and 30–40°C respectively.
Furthermore, Arrhenius modeling results for the tempera-
ture influence indicated that the As(V) reduction trend was
systematic. Total soluble As removal was consistent with
the trend of As(V) reduction.
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