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a b s t r a c t

Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial
wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The
effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively
increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There
is a close relationship among alkalinity, pH and the state of matter present in aqueous solution.
When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal
efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal
efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio.
Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite
accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA)
in the early period and free nitrous acid in the later period of nitrification when alkalinity was not
adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient.

Introduction

With human progress and the improvement of living stan-
dards, an increasing amount of contaminants containing
nitrogen have been discharged into the environment. The
large amount of nitrogen discharged into water bodies
has undermined the nitrogen cycle in nature, causing
world-wide eutrophication that occurs repeatedly. Nitro-
gen removal has been a hot and difficult research issue
in the environmental protection area. Numerous new the-
ories and technology have been developed on the basis
of traditional treatment theories and processes. Several
typical new theories and processes have emerged such as:
nitrogen removal via nitrite pathway (Hellinga et al., 1998;
Van Hulle et al., 2007), anaerobic ammonium oxidation
(Mulder et al., 1995; Strous et al., 1998), the combination
of partial nitrification to nitrite and anaerobic ammonium
oxidation (CANON) (Strous et al., 1999; Third et al., 2001)
∗Corresponding author. E-mail: han13946003379@163.com

and the enhanced biological nitrification bacteria process
(Salem et al., 2002), drawing a considerable amount of
attention of scholars. New nitrogen removal theories and
processes have shown great advantages compared to tradi-
tional theories and technology, especially nitrogen removal
via the nitrite pathway and CANON, which are both
based on partial nitrification to nitrite. The nitrite pathway
is a more practical process among these new processes.
Theoretically, nitrogen removal via nitrite yields a 25%
reduction in oxygen demand and 40% reduction in carbon
source requirement for denitrification.

Coal chemical industry wastewater is discharged in the
processes of coal gasification and coal chemical production
(Yang et al., 2006; Wang et al., 2010), the composi-
tion of which is very complex, containing various toxic
compounds and a large number of refractory organic
and inorganic contaminants, with poor biodegradability
(Maran̄ón et al., 2008). The wastewater characteristics
vary significantly according to the coal quality used in
the production. More than 244 kinds of organic com-
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pounds have been detected in the wastewater. Phenolic
compounds are the main pollutants. The wastewater also
contains polycyclic aromatic hydrocarbons, heterocyclic
compounds, long-chain hydrocarbons, ammonia, cyanide
and thiocyanate (Nakhla et al., 1990; Gai et al., 2008;
Felföldi et al., 2010; Yu et al., 2010). Although the wastew-
ater is pretreated via ammonia-stripping, it also contains
a high concentration of ammonia. Nitrogen removal was
unsatisfactory in the suspended activated sludge process
due to the presence of toxic and inhibitory matter and lim-
ited available carbon sources (Kumar et al., 2000). Under
high concentrations of phenolic compounds and inhibitors,
nitrifying bacteria were out-competed in the suspended
activated sludge system by the fast growth of heterotrophic
microorganisms (Kim et al., 2007). However, the moving
bed biofilm reactor has proved to be an effective pro-
cess to remove both organic contaminants and ammonia
in the treatment of coal chemical industry wastewater
(Li et al., 2011). Considering the limited carbon source
characteristic and complex composition of coal chemical
industry wastewater, nitrogen removal via a nitrite pathway
that requires less carbon source is a desirable method
for the treatment of coal chemical industry wastewater.
Alkalinity plays a vital role in nitrification, especially
carbonate alkalinity. Alkalinity is not only the inorganic
carbon source of heterotrophic nitrifying bacteria, but also
balances the acid-base level of the mixture, affecting the
state of matter present in aqueous solution. In this context,
a moving bed biofilm reactor (MBBR) was adopted to treat
coal chemical industry wastewater to investigate the effects
of variations of nitrogen and alkalinity on the treatment
process. The study involved five operation phases with
different alkalinity dosage ratios. The effect of alkalinity
on nitrification to nitrite and nitrite accumulation were the
key issues to be investigated. The evolution of NH+4 -N
removal and nitrite accumulation were studied by raising
the alkalinity dosage ratio stepwise.

1 Materials and methods

1.1 Experimental apparatus

The MBBR was a cylindrical Plexiglas reactor with an
internal diameter of 120 mm and height of 450 mm. The
effective volume of the MBBR was 4.85 L, followed by
a 0.5 L settling tank. The suspended carriers used in the
MBBR were circular polyethylene flakes, with a diameter
of 22 mm and thickness of 1.5 mm. The density of the
carriers was about 0.86 g/cm3, lower than that of water.
The density of carriers with attached wet biofilm was
1.11 g/cm3. The filling ratio (volumetric filling in empty
reactor) was 35%.

1.2 Inoculum and wastewater characteristics

Seed was collected from a full-scale coal chemical industry
wastewater treatment plant in Harbin, China. The sludge
was gray-black and the settling characteristic was good
with a sludge volume index of 83.

Real coal chemical industry wastewater used in this
study was obtained from the full-scale wastewater treat-
ment facility of a coal chemical plant in Harbin, China.
The characteristics of the wastewater as following: COD
895–1109 mg/L with mean value 1065 mg/L, total phenol
198–249 with mean 226 mg/L, NH+4 -N 92–118 mg/L
with mean 108 mg/L, and pH 6.5–7.5 with mean 7.16.
Considering the fluctuations in the parameters of the real
wastewater, the main parameters in the influent were
controlled by adding tap water into the real wastewater.
The concentration of ammonia was adjusted by adding am-
monia chloride. Sodium bicarbonate was added to control
alkalinity.

1.3 Experiment operation

Initially, the reactor ran for 30 days as a batch system after
being inoculated with the seed sludge obtained from the
full-scale facility, followed by a continuous flow process.
A stable biofilm was formed on the carriers, with the
biomass of 0.28 g VSS/g. During batch culture, the reactor
was fed with the real wastewater diluted by adding tap
water, with the COD concentration increasing stepwise
from 500 to 1000 mg/L in three steps. The hydraulic
retention time was 36 hr in the continuous flow process
during the experimental period. The motion of carriers was
driven by aeration introduced at the bottom of the reactor
and the dissolved oxygen (DO) concentration was kept
around 1.8 mg/L. The experiment operation was divided
into 5 phases (Table 1) and the temperature was controlled
at (25 ± 2)°C throughout the experiment.

Table 1 Operational conditions

Phase Time COD Total phenols NaHCO3

(days) (mg/L) (mg/L) (dosage ratio)∗

I 1–15 1002.65 ± 11.72 208.99 ± 5.24 –
II 16–30 501.95 ± 7.37 114.26 ± 5.38 –
III 31–45 504.28 ± 9.44 115.50 ± 5.66 2:1
IV 45–60 1000.46 ± 9.51 210.66 ± 6.89 2:1
V 61–75 998.78 ± 8.45 209.72 ± 5.83 0.5:1

76–90 1:1
91–105 1.5:1
106–120 2:1
121–135 2.5:1

∗Dosage ratio: defined as the molar ratio of sodium bicarbonate to
ammonia
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1.4 Specific oxygen uptake rate test

Specific oxygen uptake rate (SOUR) is an important pa-
rameter to assess the activity of activated sludge. Table 2
lists the substrate solutions for SOUR measurement. The
SOUR test was conducted to investigate the distribution
characteristics of the two kinds of nitrifying microor-
ganism, ammonia oxidizing bacteria (AOB) and nitrite
oxidizing bacteria (NOB). Activated sludge from different
samples was first separately maintained at 20°C and was
continuously aerated to saturate it with a sufficient DO
concentration. Then the activated sludge was centrifuged at
the speed of 1400 r/min for 3 min. The centrifuged sludge
samples were rinsed to wash out the NH+4 , NO−2 and NO−3
adsorbed on the sludge. The substrate solutions (Table 2)
were aerated for 2 hr to saturate the DO concentration at
20°C. The pretreated sludge and substrate solution were
mixed into a 300 mL dissolved oxygen bottle, and the
initial mixed liquor volatile suspended solids (MLVSS)
was kept at 200 ± 20 mg VSS/L. Then each bottle was
sealed carefully with a rubber stopper equipped with
an IntelliCAL LDO probe (101, HACH, USA), without
air bubbles inside. The mixtures were then incubated at
20°C and stirred with a magnetic stirrer. The DO con-
centration in each bottle was continuously monitored. The
SOUR of each sample equaled the linear regression slope
of the DO drop vs. time divided by the VSS concentration
in the bottle. All batch tests were preformed in triplicate.

The substrate solution for SOUR measurement of AOB
was without an organic carbon source or nitrite (Table 2).
A 20-mmol NaClO3 was added to the mixed solution as
inhibitor to selectively prevent nitrite from being oxidized
to nitrate (Belser and Mays, 1980; Hynes and Knowles,
1983). Allylthiourea (5 mg/L) was added into the feed
solution for SOUR measurement of NOB as a selective
inhibitor to keep ammonia from being oxidized to nitrite
(Wood et al., 1981; Chung et al., 2006), because a small

amount of ammonia might be left in the sludge or arise
from endogenous nitrification. 100 mg/L COD was sup-
plied by the coal chemical industry wastewater in terms
of feed solution for SOUR measurement of heterotrophic
microorganisms. Both selective inhibitors were added into
the feed solution for SOUR measurement of heterotrophic
microorganisms due to coal chemical industry wastewater
including ammonia and nitrite. The endogenous respi-
ration rate of the activated sludge was tested as blank.
The substrate solution for blank measurement was without
organic compounds, ammonia or nitrite, having minerals
only. The net SOUR of each kind of microorganism
was calculated by subtracting the SOUR caused by the
endogenous respiration rate from the measured SOUR.

1.5 Analytical methods

COD, NH+4 -N, NO−2 -N, NO−3 -N were measured daily in
accordance with standard methods (APHA, 1998). Bicar-
bonate alkalinity was determined by a distillation method.
pH and DO were measured using a pHC101 probe and
IntelliCAL LDO probe, both of which were connected to a
multifunction meter (HQ30d, HACH, USA).

2 Results and discussion

2.1 Relationships among alkalinity, pH and ion form

Generally, pH is in the range of 6.5–8.5 in common
biological wastewater treatment systems, the alkalinity of
which is composed of carbonate alkalinity (CO2−

3 , HCO−3
and CO2). There is also a buffer capacity in the carbonate
balance system. The relationship between alkalinity and
pH in the carbonate system is shown in Fig. 1.

The dissociation equilibrium in a carbonate solution

Table 2 Composition of the feed solutions for the SOUR tests

Compound Heterotrophic AOB NOB Blank
microorganism

Electron donor Coal chemical industry wastewater (mg/L) 100 – – –
NH4Cl (mg/L) – 100 – –
NaNO2 (mg/L) – – 100 –

Buffer KH2PO4 (mg/L) 0.85 0.85 0.85 0.85
K2HPO4 (mg/L) 2.1 2.1 2.1 2.1
Na2HPO4·7H2O (mg/L) 3.3 3.3 3.3 3.3

Inorganic salt MgSO4·7H2O (mg/L) 2.2 2.2 2.2 2.2
CaCl2 (mg/L) 2.7 2.7 2.7 2.7
FeCl3·6H2O (mg/L) 0.25 0.25 0.25 0.25
KCl (mg/L) 3.2 3.2 3.2 3.2
MnSO4·H2O (mg/L) 1.6 1.6 1.6 1.6
NaHCO3 (mg/L) 800 800 800 800

Inhibitor NaClO3 (mmol) 20 20 – –
Allylthiourea (mg/L) 5 – 5 –
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Fig. 1 Relationship between alkalinity and pH in carbonate system.

system can be described as following Reaction (1).

CO2+H2O←→H2CO3⇐⇒H++HCO−3←→2H++CO2−
3 (1)

CO2 in water mainly exists in dissolved gas molecule
form. Only a small part of CO2 dissolved in water reacts
with water to form carbonic acid. The sum of the two is
referred as to free carbon dioxide. The first dissociation
equilibrium constant can be calculated by Eq. (2):

K1 =
[H+][HCO−3 ]

H2CO−3
=

[H+][HCO−3 ]
[CO2] + [H2O]

(2)

K1 = 4.45 × 10−7 at 20◦C.

The second dissociation equilibrium constant of HCO−3 can
be calculated by Eq. (3)

K2 =
[H+][CO2−

3 ]
HCO−3

K2 = 4.69 × 10−11 at 20◦C. (3)

The proportions of CO2, HCO−3 and CO2−
3 change with

the variation of pH as shown in Fig. 2.
Ammonia is the energy and nitrogen source of nitrifying

bacteria. Free ammonia (FA) is the real growth substrate
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Fig. 2 Variation of form proportion with pH in carbonate system

of AOB, while a high concentration of FA shows an
inhibitory effect on the activity of AOB and NOB. Forms
of nitrogen in ammonia solution include NH3 and NH+4 ,
between which there is dissociation equilibrium (Reaction
(4)).

NH3 + H2O⇐⇒NH+4 + OH− (4)

The proportion of FA can be estimated using Eq. (5).

CFA

CTNH3

=
10pH

Kb/Kw + 10pH (5)

where, Kb is the dissociation equilibrium constant (Kb =

10−4.7 at 20°C). Kw is the ion product constant of water,
(Kw = 1 × 10−14 at 20°C).

Free nitrous acid (FNA) is the feed of NOB; it can also
inhibit the growth and activity of both AOB and NOB.
The concentration of FNA (CFNA) at different pH can be
calculated by Eq. (6):

CFNA

CTNH2

=
1

1 + Ka×10pH (6)

where, Ka is the dissociation equilibrium constant of
nitrous acid (Ka = 10−4.5 at 20°C). The proportion of FA
and FNA as a function of pH can be calculated by Eqs. (5)
and (6) (Fig. 3).

Alkalinity plays an important role in terms of both
growth substrate and environment for microorganisms,
especially in establishing a balanced system for the growth
of AOB and NOB in the control of nitritation.

2.2 SOUR

The SOUR experiments were performed to assess the
microbial distribution for sludge obtained from different
periods. The proportions of the three kinds of microorgan-
isms in activated sludge could be estimated according to
the SOUR. Figure 4 shows the decline of DO concentra-
tion per unit biomass and time of sludge collected from

0 2 4 6 8 10 12
0

20

40

60

80

100

P
ro

p
o
rt

io
n

 (
%

)

pH

FA to total

ammonia
FNA to nitrite

Fig. 3 Proportion of FA and FNA in the corresponding system.
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different phases for three kinds of electron donors. After
blank correction, the slope of each line represented the
SOUR of the different microbial groups.

For organics (expressed as COD) oxidation, the SOURs
of suspended and attached activated sludge in MBBR were
9.110 mg O2/(g VSS·hr) and 9.360 mg O2/(g VSS·hr),
respectively, both higher than that of raw sludge (6.692
mg O2/(g VSS·hr)), which demonstrated that the ability for
organic contaminant (mainly phenolic compounds) degra-
dation of activated sludge in the MBBR was promoted after
domestication. The SOUR difference of suspended and at-
tached activated sludge was not significant. The SOURs for
the ammonia oxidation by suspended and attached sludge
in the MBBR were 3.5 and 4 times higher than that of the
original sludge respectively, suggesting that the biomasses
of AOB in suspended and attached activated sludge were
3.5 and 4 times higher, assuming AOB in different sources
with similar activity. For nitrite oxidation, the SOUR of
raw sludge was estimated to be 3.5 times higher than
that of the sludge in the MBBR. The distribution ratio
of AOB to NOB was 1.65 assuming similar microbial
activity, implying the presence of more AOB compared to
NOB. In comparison, the ratios for suspended and attached
activated sludge were calculated to be 18.67 and 25.73,
indicating that AOB was dominant in the MBBR. The
results indicated that there was a significant difference
in microbial distribution for different activated sludge.
In addition, AOB was more easily adapted for attached
growth to the carrier. NOB was gradually eliminated by
heterotrophic microorganisms and AOB via the synergetic
inhibition of FA and FNA (Park et al., 2010a), when carbon
source and DO were the limiting factors.

2.3 Ammonia removal efficiency

Treatment effectiveness during the first four phases is
shown in Fig. 5. Removal of COD and total phenols
stabilized after operation for about 7 days, and removal
efficiency of COD and total phenols reached 81% and 90%

respectively. However, ammonia removal efficiency was
no more than 20%. COD and total phenol concentrations
were reduced by half in the second phase by dilution with
tap water. Removal of COD and total phenols were still
stable and rose slightly, while ammonia removal was not
enhanced yet. The SOUR test indicated that the sludge
contained a certain amount of AOB. Ammonia removal
efficiency was not promoted by diluting the contaminant
concentrations, implying that toxic compounds in the
coal chemical industry effluent were not the key factor
inhibiting nitrification.

Sodium bicarbonate was added to supplement alkalinity
from the third phase on, with the dosage ratio of 2:1.
Ammonia removal efficiency ascended rapidly from 20%
to 88% after adding sodium bicarbonate. Augmentation of
the pollutant concentration in the influent induced a sudden
rise of NH+4 -N in the effluent (IV phase), while NH+4 -N
removal efficiency returned to the normal level (88%) in 4
days. The result suggested that alkalinity played a vital role
in ammonia removal and was an important factor affecting
AOB. The investigation also demonstrated that the toxicity
of coal chemical industry wastewater was not the main
inhibitory factor for nitrification.

The evolution of NH+4 -N in the influent and effluent
on heightening the alkalinity dosage ratio stepwise is
illustrated in Fig. 6. NH+4 -N removal efficiency dropped
from 90% to 31% rapidly when the alkalinity dosage ratio
varied between 2.0:1 and 0.5:1. NH+4 -N removal efficiency
ascended to 72% and then fell to 40% when the alkalinity
dosage ratio rose to 1.0:1. The level of NH+4 -N in the
effluent at the dosage ratio of 1.5:1 was similar to that at
the dosage of 1.0:1. When alkalinity was sufficient (dosage
ratio > 2.0:1), NH+4 -N removal efficiency stabilized at
around 89%.

NH+4 -N removal increased first and then decreased,
stabilizing at a low level when alkalinity addition was
insufficient. Each 1.0 mol ammonia nitrification consumes
2.0 mol alkalinity theoretically, according to the nitri-
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Fig. 5 Effect of alkalinity on treatment effectiveness.

fication chemical equation. Alkalinity consumption will
attenuate the buffering capacity of the mixture, and result
in a diminution of pH. On one hand, the fall of pH
lowered the FA concentration, which was the real feed
for AOB (Bagchi et al., 2010). According to the Monod
equation, the reaction rate changes from a zero-order
reaction to a pseudo first-order reaction when the sub-
strate concentration decreases, especially when less than
the saturation constant, causing the reduction of NH+4 -N
removal. On the other hand, the drop of pH attenuated the
microbial activity of AOB, hindering nitrification. A peak
was observed in terms of NH+4 -N removal efficiency at
each alkalinity dosage ratio when it increased from 0.5:1 to
1.5:1 stepwise. The peak removal efficiency exceeded the
theoretical amount of NH+4 -N removal (calculated by the
ratio of alkalinity to sufficient alkalinity). It was difficult
to give a definite reason for the peak, and this requires
further study. NH+4 -N removal was stable when alkalinity
was adequate due to the successful nitrification, and this
environmental condition was suitable for the growth and
metabolism of nitrifying bacteria.

2.4 Nitrite accumulation

Nitrite accumulation is the primary step for biological
nitrogen removal via nitrite. The evolution of nitrite accu-

mulation throughout the experiment is illustrated in Fig. 7.
The nitrite accumulation rate was very low when no extra
alkalinity was added (phases I and II), and a small amount
of nitrite accumulation was obtained at the end of phase
II. 84% nitrite accumulation emerged with sufficient alka-
linity addition (phases III and IV), which suggested that
alkalinity was not only essential for ammonia removal, but
also played a vital role in nitrite accumulation. The nitrite
accumulation rate dropped to 37% in a short period of time
when the alkalinity dosage ratio declined from 2:1 to 0.5:1.
The nitrite accumulation rate continued to decrease and
was stable at 30% when the alkalinity dosage ratio rose to
1.0:1. The nitrite accumulation rate rose to 84% and then
dropped to 75% when the alkalinity dosage ratio increased
to 1.5:1. The nitrite accumulation rate reached 96% when
alkalinity addition was adequate (dosage ratio > 2.0:1).

One of the essential requirements for nitrite accumula-
tion is taking measures to suppress the activity of NOB
but with no effect on AOB. According to the SOUR test,
AOB was dominant compared to NOB in the reactor.
However, the small amount of NOB would attenuate nitrite
accumulation because nitrite oxidation to nitrate was much
easier than ammonia oxidation to nitrite in the two-step
nitrification. AOB are inhibited by FA in the range of 10–
150 mg/L, while NOB are more sensitive to FA in the
range of 0.1–1.0 mg/L (Anthonisen et al., 1976; Park and
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Fig. 7 Variations of nitrite accumulation rate at different alkalinity
dosage ratios.

Bae, 2009); and it was found that NOB could be inhibited
completely by impeding the respiration if the FA level was
higher than 6.0 mg/L (Vadivelu et al., 2007). The inhibitory
concentrations of FNA for AOB and NOB were 0.4 mg/L
and 0.02 mg/L respectively (Vadivelu et al., 2006a, 2006b).
Therefore, the activity of NOB could be suppressed by
the double inhibitions of sensitivity difference to FA and
FNA. A triple inhibition was formed when combined
with low DO concentration. The pH of the influent was

around 7.0 without sodium bicarbonate addition. Although
the total ammonia in the influent was about 100 mg/L,
the proportion of FA was small (Fig. 3, Eq. (5)), and
was not up to the level to inhibit NOB, resulting in a
low nitrite accumulation rate. When a small amount of
sodium bicarbonate was added, pH in the influent rose and
FA reached the concentration range that inhibited NOB,
inducing the increase of nitrite accumulation rate. pH was
decreased by the H+ generated in the nitrification. The
inhibition of FA toward NOB then disappeared due to the
fall of pH, and the nitrite accumulation rate dropped. The
biological activity of NOB was inhibited by the FA in
the influent when the alkalinity dosage ratio was 1.5:1,
leading to the increase of nitrite accumulation rate. The
consumption of alkalinity during the nitrification reaction
lowered the pH. The inhibitory effect of FA on NOB
continued to weaken and even disappeared because of the
continuous decrease of pH, and the nitrite accumulation
rate declined accordingly. With the continuous diminution
of pH, the proportion of FNA in the accumulated nitrite
rose and arrived at the inhibitory level to NOB (Torà et
al., 2010). Then nitrite accumulation no longer declined.
When alkalinity addition was sufficient, FA was sufficient
to inhibit NOB, and the nitrite accumulation rate was
maintained at a high level (Park et al., 2010b). It was
found that the inhibitory effects of FA and FNA on NOB
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were temporary. When inhibition terminated, the activity
of NOB revived.

3 Conclusions

pH affected the form of NH+4 -N and nitrite present in aque-
ous solution, and there was a negative correlation between
the two. Alkalinity plays an important role in terms of both
growth substrate and environment for microorganisms,
especially in establishing a balanced system for the growth
of AOB and NOB in the control of nitritation.

The biomasses of AOB in suspended and attached
activated sludge were 3.5 and 4 times higher than that
of the original sludge. The distribution ratio of AOB to
NOB was about 1.65 in the raw sludge, while the ratios for
suspended and attached activated sludge were calculated to
be 18.67 and 25.73, indicating that AOB was dominant in
the MBBR.

Alkalinity was a vital factor in ammonia removal.
NH+4 -N removal efficiency rose from 13% to 88% when
adequate sodium bicarbonate was added. NH+4 -N removal
increased first and then decreased, stabilizing at a low
level when alkalinity addition was insufficient. A peak was
observed in terms of NH+4 -N removal efficiency at each
alkalinity dosage ratio when it increased from 0.5:1 to
1.5:1 stepwise. The reason for the peak removal needs to
be further studied. Generally, NH+4 -N removal efficiency
increased with the increase of the alkalinity dosage ratio.

Nitrite accumulation could be achieved via the double
inhibition of FA and FNA at low DO concentration when
alkalinity addition was not sufficient. Initially, inhibition
by FA toward NOB was employed to realize nitrite accu-
mulation. The fall of pH enhanced the inhibitory effect of
FNA on NOB along with the nitrifying process. Only the
inhibitory effect of FA on NOB worked when alkalinity
was adequate. The inhibitory effects of FA and FNA on
NOB were temporary. When inhibition terminated, the
activity of NOB revived.
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Marañón, E., Vázquez, I., Rodrı́guez, J., Castrillón, L., Fernández, Y.,
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