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This study focuses on the effects of pH and fluoride at different molar ratios of fluoride to Al
(RF:Al) on the removal of cadmium (Cd2+) and phosphate by Al coagulation. Fluoride at
RF:Al ≥ 3:1 inhibits the removal of Cd over wide Al dose ranges from 5 to 10 mg/L as Al. The
removal of phosphate decreases significantly at high RF:Al of 10:1 whereas at lowered RF:Al
(i.e., ≤6:1), an adverse effect is observed only at insufficient Al doses below 2 mg/L. Fluoride
shows inhibitive effects towards the removal of Cd at pH 7 and 8 and that of phosphate at
pH 6. Fluoride decreases the ζ-potential in both systems, and the decreasing extent is
positively correlated to the elevated RF:Al. The Al fluoride interactions include the formation
of Al–F complexes and the adsorption of fluoride onto Al(OH)3 precipitates, i.e., the
formation of Al(OH)nFm. Al–F complex formation inhibits Al hydrolysis and increases
residual Al levels, and a more significant increase was observed at lower pH. Al–F
complexes at high RF:Al complicate the coagulation behavior of Al towards both negative
and positive ionic species. Moreover, fluoride at low RF:Al shows little effect on Al
coagulation behavior towards Cd2+ and phosphate, and the spent defluoridation adsorbent,
i.e., aluminum (Al) hydro(oxide) with adsorbed fluoride at RF:Al of below 0.1:1, may be
reclaimed as a coagulant after being dissolved.
© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

Some industries, e.g., semiconductor production, tantalum
and niobium refinery, and rare earth refinery, produce
complicated wastewaters with fluoride concentrations from
several to several tens of thousand mg/L, and soluble species
such as heavy metals, phosphate, and arsenic are sometimes
simultaneously present (Wen and Du, 2001; Zhu et al., 2005;
Zhang et al., 2006). The simultaneous removal of these
pollutants has practical value from an engineering point-of-
view. Coagulation and/or electro-coagulation are feasible
ways to remove the positively-charged heavy metals and
ac.cn (Huachun Lan).

o-Environmental Science
negative anions such as phosphate, arsenic, and fluoride
(Aguilar et al., 2002; Meng et al., 2000; Merzouk et al., 2009;
Akbal and Camcı, 2010; Gong et al., 2012). Coagulation by
aluminum (Al) salts shows promise to achieve their simulta-
neous removal due to the good affinity of Al hydro (oxide)
towards them. By comparison, iron salts exhibit little efficacy
for the removal of fluoride, although they show strong affinity
towards arsenic and phosphate.

Although the removal of fluoride by Al-based (electro)-
coagulation has been studied (Gong et al., 2012; Zhao et al.,
2009; Bhatnagar et al., 2011), studies investigating the effects
of fluoride on the removal of abovementioned ions are rare.
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c.a

c.c
n

s, Chinese Academy of Sciences. Published by Elsevier B.V.

http://www.jesc.ac.cn


c.c
n

119J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 3 2 ( 2 0 1 5 ) 1 1 8 – 1 2 5
Aluminum-fluoride interactions dominate in the species
distribution, transport and toxicity of aluminum. In acidic
deposition areas, the formation of aluminum fluoride com-
plexes (Al–F complexes) was reported to be extremely impor-
tant in the transport of elemental aluminum and its toxicity
towards fish in surface waters (Driscoll et al., 1980; Radic and
Bralic, 1995). The rate of aluminum fluoride complexation is
observed to be highly dependent on pH (Neal, 1995), and the
formation of hydrolyzed Al(III) species (i.e., Al(H2O)5(OH)2+) at
pH above 4.5 significantly increases the complexation rate
(Plankey et al., 1988). As indicated by potentiometric study and
thermodynamic modeling, the Al–F complexes' speciation is
rather complicated and their species distribution is highly
dependent on pH, fluoride concentrations, and ionic strength
(Corbillon et al., 2008). The ratios of complexed fluoride to total
fluoridewere observed to be strongly dependent on solution pH
and the molar ratios of F to Al (RF:Al) (Gong et al., 2012). The
effects of aluminum–fluoride interactions on the coagulation
behaviors of Al salts should be carefully evaluated. Al–F
complex formation affects the hydrolysis of Al3+ and the
formation of Al(OH)3 precipitates, and presumably inhibits the
removal of negatively-charged anions such as arsenate and
phosphate. Our previous study indicated the adverse effect
of fluoride on aluminum coagulation in kaolin suspensions,
and the formation of Al–F complexes at high fluoride levels
dominated in its inhibitive effect (Liu et al., 2013). Besides Al–F
complex formation, the adsorption of fluoride onto Al hydro
(oxide) also plays a role. Pommerenk and Schafran (2005)
indicated that the attachment of fluoride on hydrous alumi-
num oxide decreased its surface charge and adversely affected
the removal of natural organic matter (NOM) accordingly
(Pommerenk and Schafran, 2005). Furthermore, aluminum
oxide tends to dissolve in the acidic pH range. The dissolution
may be enhanced after it is dosed into fluoride-containing
water, and the removal of other species might be inhibited
thereafter. However, the effect of fluoride on the removal
of coexisting ions by Al coagulation is far from being well
characterized to the best of our knowledge.

On the other hand, the wide occurrence of fluorosis has
received great concern globally (Fawell et al., 2006). Although
various techniques have been proposed for defluoridation
(Bhatnagar et al., 2011; Fawell et al., 2006; Mohapatra et al.,
2009), their implementation has been restricted by high cost,
labor-intensive maintenance, and/or low ratios of water
production (Mohapatra et al., 2009). The control of cost is of
crucial importance (Fawell et al., 2006; Mohapatra et al., 2009),
and the reclamation of spent adsorbents is economically
valuable. This may be feasible considering the low equilibri-
um adsorption capacity (Qeq) towards fluoride for most
adsorbents (Bhatnagar et al., 2011; Liu et al., 2011). The spent
aluminum hydroxide, with adsorbed fluoride, may be reused
as a coagulant to remove particulate colloids after being
dissolved by acid solution (Liu et al., 2013). However, the
feasibility of its reclamation for the removal of soluble ions
such as cadmium (Cd2+) and phosphate should be properly
evaluated.

On the basis of these considerations, this study aims to:
(1) investigate the effects of fluoride at different RF:Al ratios on
the removal of positive Cd2+ and negative phosphate by Al
coagulation over a wide pH range; (2) determine the effects of
fluoride on the variation of residual Al levels and ζ-potential
involved in Al coagulation; and (3) propose the dominant
species interactions between aluminum and fluoride over
wide pH and RF:Al ranges. Besides bench-scale experiments,
the MINTEQ software was used to illustrate the interactions
between Al3+, Cd2+, F−, and phosphate over a wide pH
range.
c.a

1. Materials and methods

1.1. Reagents and materials

Unless otherwise noted, all chemicals were of analytical-
reagent grade and were used without further purification.
Stock solutions of Al3+, F−, Cd2+, and phosphate were prepared
by dissolving aluminum chloride (AlCl3), sodium fluoride
(NaF), cadmium nitrate (Cd(NO3)2), and potassium phosphate
(KH2PO4) into deionized water, respectively. The NaF solution
was kept in a polyethylene vessel.

Prior to being dosed, the stock solution of Al3+ and F− at
different RF:Al was well mixed. This procedure was adopted
considering that upon acidification of the spent Al2O3·xH2O
with adsorbed fluoride for its reclamation, a mixed solution of
Al3+ and F− was obtained. Additionally, other contaminants
may coexist in underground waters and can be adsorbed onto
the spent Al2O3·xH2O; however, their interfering effects can be
assumed to be slight and were ignored in this study. The
equilibrium pH values and the ratios of complexed fluoride
(the analysis methods are described in Section 1.3) in the
mixed solutions at different RF:Al ratios are illustrated in
Fig. S1.

Raw water was respectively prepared by dosing stock
solutions of Cd2+ or phosphate in tap water to desired
concentrations of 3 mg/L as Cd and 2 mg/L as P. The
characteristics of the tap water are illustrated in Table S1. In
pH-effect experiments, solution pH was adjusted to the
desired values with hydrochloric acid (HCl) and sodium
hydroxide (NaOH). The species distribution of Cd and phos-
phate over wide pH ranges from 4 to 10, as calculated by the
Visual MINTEQ software (see Section 1.4), is illustrated in Fig.
S2. Cd2+ is the dominant species in the pH range from 4 to 9,
and the ratios of Cd2+ to total Cd decrease from 100% at pH 4
to 92.4% at pH 9. H2PO4

− and HPO4
2− are the main species at pH

from 4 to 9, and at pH above 7.2 the ratio of HPO4
2− is over

50.6%.

1.2. Experimental methods

Jar tests were performed using a Phipps and Bird six-paddle
stirrer. Soon after a 10-s rapid mixing period (250 r/min),
the mixed solution of AlCl3 and NaF was added. After that, the
coagulation procedures consisted of a 2-min rapid mix
(200 r/min), 15-min slow mix (40 rpm), and a 30-min settling
period. Samples for zeta potential (ζ-potential) analysis were
sampled soon after the 10-s rapid mixing period, whereas pH
adjustment was carried out in the 2-min rapid mixing period
when necessary. After 30-min settling, supernatants were
collected and then filtered through 0.45-μm membrane filters
for further analysis.
jes
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1.3. Analysis methods

ζ-Potential was determined with a Zetasizer 2000 zeta
potential analyzer (Malvern Co., Malvern Town, U.K.) and
solution pH was analyzed with a Orion 720A pH meter
(ThermoFisher Co., Waltham, Massachusetts, USA). The
concentrations of Al, Cd, and phosphate as P were
determined using an OPTIMA 2000DV Inductively Coupled
Plasma Optical Emission Spectrometer (ICP-OES) (PerkinElmer
Co., Waltham, Massachusetts, USA). The quantity of insoluble
Al precipitates as Al was determined by subtracting the
residual Al concentrations from the initial Al doses.

The concentrations of fluoride (free fluoride and total
fluoride) were determined by the ion selective electrode
method (PF-1, Shanghai KangYi Technology). The concentra-
tions of complexed fluoride were determined by subtracting
the concentration of free fluoride from that of total fluoride,
according to the methods proposed in our previous study
(Gong et al., 2012). Briefly, the abovementioned method was
used except that a citrate buffer solution was added prior to
the analysis of total fluoride concentrations.

1.4. Modeling methods

The visual MINTEQ software (Version 3.0, beta) was used to
illustrate the species distribution of Cd and phosphate over wide
pH ranges aswell as the interactions betweenCd,Al, fluoride, and
phosphate. The concentrations of these elements were set
according to the actual concentrations used in this study, and pH
rangedfrom4to10.IntheAl–Fsystem,thespeciesAl3+,F−,Al(OH)2+,
Al(OH)3(aq), Al(OH)4−, AlF2+, AlF2+, AlF3(aq), AlOH2+,HF(aq), HF2−, AlF4−,
andAl2(OH)24+were included,andthe fourAl–FcomplexesofAlF2−,
AlF2−,AlF3,andAlF4−wererelatedtoboththecomplexedfluorideand
the complexedAl. In the Cd-F system, the Cd species Cd(OH)2(aq),
Cd(OH)3−, Cd(OH)42−, Cd2+,Cd2OH3+,CdF+, andCdOH+were included,
and CdF+was related to the Cd–F complexes. In the Al-phosphate
system, theAlspeciesAl(OH)2+,Al(OH)3(aq),Al(OH)4−,Al3+,Al2(OH)24+,
Al2PO4

3+, Al3(OH)45+, AlHPO4
+, and AlOH2+ were included. The

concentrationsofCd,phosphate,Al, andF inmodelingwereequal
to thoseused inbench-scaleexperiments.
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Fig. 1 – Effects of fluoride at RF:Al values on the removal of (a) Cd
Conditions: pH = 7.06, [Cd]0 = 3 mg/L, [phosphate]0 = 2 mg/L as P
2. Results and discussion

2.1. Effects of fluoride on the removal of Cd and phosphate at
different Al doses

Fig. 1 illustrates the effects of fluoride at RF:Al values from 0:1 to
10:1 on the removal of Cd and phosphate by Al coagulation with
elevated Al doses. In the absence of fluoride (RF:Al = 0:1), Al
coagulation showed only slight efficiency in removing Cd, and
residual Cd was as high as 1.54 mg/L even at the high Al dose of
50 mg/L as Al. Al coagulation showed low removal efficiency
towards positive Cd2+, and limited removal of other cationic ions
as nickel and chrome by flocculation has also been reported
before (Santinelli et al., 2012). Comparatively, Al coagulation
showed significantly higher removal efficiency of phosphate,
and residual phosphate was as low as 0.31 and 0.05 mg/L as P at
AlCl3 doses of 3 and 5 mg/L as Al, respectively. The remarkable
removal of phosphate by Al coagulation has been reported
before (Aguilar et al., 2002; Santinelli et al., 2012; Georgantas and
Grigoropoulou, 2007), and the dominant interactions between
alum and phosphates included the adsorption of phosphate
onto Al(OH)3, the incorporation of phosphate onto stabilized
colloids via sweep flocculation, and the formation of insoluble
Al–P precipitates (Aguilar et al., 2002).

The introduction of fluoride showed critically different
effects on Al coagulation regarding the removal of Cd and
phosphate. Fluoride at low RF:Al of 1:5 and 1:1 showed a
beneficial effect on the removal of Cd, whereas at elevated
RF:Al, higher levels of residual Cd were observed. As for the
removal of phosphate, fluoride at the RF:Al value of 10:1
contributed to a significant increase in residual phosphate
over a wide Al dose range, from 0.5 to 10 mg/L. At RF:Al values
below 10:1, little effect of fluoride on residual phosphate was
observed at sufficient Al doses, above 3 mg/L. However, in
insufficient Al dose ranges of 0.5 and 1 mg/L as Al, fluoride at
RF:Al of above 1:1 inhibited the removal of phosphate and the
levels of residual phosphate increased to a large extent.

In the absence of fluoride, the ζ-potential of Al flocs in the
Cd-removing system was consistently above 0 mV with Al
jes
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doses increasing from 5 to 50 mg/L. The introduction of
fluoride lowered the ζ-potential of Al flocs, and a more
significant decrease was observed either at higher fluoride
levels or at lower Al doses (Fig. 2). The reversal of ζ-potential
to below 0 mV occurred at high RF:Al of 3:1 at the relatively low
Al dose of 5 mg/L as Al. ζ-Potential reversal was not observed
at the elevated Al dose of 40 mg/L. Generally, the absolute
values of the ζ-potential approached 0 mV after introducing
fluoride. In the phosphate-removing system, much lower
ζ-potential was observed even in the absence of fluoride (i.e.,
RF:Al = 0:1), owing to the attachment and incorporation of
negative phosphate ions within Al(OH)3 flocs. Fluoride at high
RF:Al of above 3:1 further decreased the ζ-potential (Fig. 2).
Comparatively, more significant decrease in ζ-potential was
observed in the Cd-removing system than in the phosphate-
removing system (Fig. S3).

The adsorption of fluoride onto hydrous aluminum oxides
via ligand exchange, as indicated by Eq. (1), cannot contribute
to ζ-potential reversal, although it did decrease the ζ-potential
to some extent (Pommerenk and Schafran, 2005). In this
study, fluoride significantly lowered the ζ-potential and the
reversal of the ζ-potential to negative values was observed. It
was assumed that besides adsorbing onto the surfaces of
Al(OH)3 precipitates, fluoride also participated in the hydroly-
sis of Al salts and in the formation of Al precipitates. Al–F
complex formation was involved in the removal of fluoride by
Al coagulation, and the formed flocs differed greatly from the
Al(OH)3 flocs with adsorbed fluoride (Gong et al., 2012). The
formed Al precipitates in these two systems were assumed to
be significantly different from the Al(OH)3 precipitates.

≡ Al‐OHþ F−→≡Al–F− þ OH− ð1Þ

The removal of fluoride in these two systems was compared
in terms of the adsorption density of fluoride (QF, i.e., mg of
removed fluoride per mg insoluble Al precipitates as Al). QF

values increased with elevated RF:Al in both systems (Fig. S4),
and the maximum QF values were 4.7 and 3.0 mgF/mgAl in Cd-
and P-removing system, respectively. Phosphate inhibited the
c.c
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attachment of fluoride onto Al precipitates and the removal of
total fluoride thereafter.

Fluoride also contributed to elevated levels of residual Al in
both systems; the ratios of residual Al to total Al, as indicated
by AlRes/AlTot, were observed to increase markedly with
elevated RF:Al values (Fig. 3). Without fluoride present, residual
Al concentrations were consistently below 0.1 mg/L over a
wide Al dose range. Elevated RF:Al favored the formation of
soluble Al–F complexes and inhibited the hydrolysis and
precipitation of Al salts thereafter. Al–F complex formation
was dependent on pH, and the ratios of complexed fluoride
were above 99% at acidic pH < 5, whereas at pH 7.0, Al–F
complexes tended to dissociate into free fluoride, and
complexed fluoride was below the detection limit (RF:Al =
0.53:1) (Gong et al., 2012). The elevation of RF:Al to above 2.13:1
enabled the formation of Al–F complexes at pH 7.0, whereas at
pH 8.0 their formation rarely occurred even at high RF:Al of
2.85:1 (Gong et al., 2012). In this study, extremely high RF:Al

benefited Al–F complex formation and reduced the particulate
Al available for the removal of Cd and phosphate. Compara-
tively, the negative phosphate ion inhibited Al fluoride
interactions, and the effect of fluoride on residual Al was
less significant than that in the Cd-removing system.

2.2. Effects of fluoride on the removal of Cd and phosphate at
different pH

2.2.1. Effects of fluoride on the removal of Cd at different pH
Fig. 4 indicates the effects of fluoride at different RF:Al on Cd
removal, ζ-potential, and Δresidual Al in pH 6 to 8. ΔResidual
Al was calculated by the subtraction of the residual Al
concentration from that obtained in the absence of fluoride.
In the absence of fluoride, i.e., RF:Al = 0:1, Cd removal increased
with elevated pH, and the ζ-potential approached 0 mV
accordingly. At pH 6 the removal of Cd was slight, and fluoride
showed little effect; nevertheless a decreased ζ-potential was
observed. At elevated pH 7 and 8, fluoride showed little effect
at RF:Al < 1:1, and further elevated RF:Al adversely inhibited Cd
removal. At pH 8 a negative ζ-potential was observed due to
the introduction of fluoride. However, this effect did not favor
the removal of positively-charged Cd. The removal of Cd by Al
coagulation was independent of ζ-potential. It is inferred that
the ligand exchange between surface hydroxyl groups and
fluoride consumes available sites and inhibits Cd removal
thereafter. ΔResidual Al increased with elevated RF:Al at pH 6,
owing to the more significant formation of Al–F complexes
(Eq. (2)). At elevated pH, the complexed fluoride (complexed-F)
was insignificant, and residual Al was only slightly affected by
fluoride even at high RF:Al of 6:1.

Al3þ þ nF−→Al–Fn complexes ð2Þ

2.2.2. Effects of fluoride on the removal of phosphate at different pH
Fig. 5 illustrates the effects of fluoride on the removal of
phosphate, ζ-potential, and Δresidual Al in pH 6 to 8. Fluoride
at RF:Al = 1:5 showed little effect on phosphate removal over a
wide pH range. At elevated RF:Al of above 1:1, phosphate
removal was greatly inhibited at pH 6, and residual phosphate
significantly increased from 0.14 to 1.78 mg/L at RF:Al = 6:1. At
pH 7 and 8, fluoride showed little effect on phosphate removal.
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Fluoride lowered the ζ-potential of Al precipitates at pH 6–8,
and a more significant decrease was observed at elevated RF:Al.
However, ζ-potential was below 0 mV even in the absence of
fluoride, and the fact that fluoride lowers ζ-potential played a
limited role to inhibit phosphate removal. Additionally, it was
observed that fluoride showed little effect on Al hydrolysis, and
Δresidual Al showed little variation in pH 6–8 even at high RF:Al
of 6:1. Comparatively, in the Cd-removing system Δresidual Al
increased remarkably with elevated RF:Al at pH 6 (Fig. 4c). This
was first attributed to the much higher Al dose, i.e., 30 mg/L as
Al, than that in the Cd-removing system (3 mg/L as Al).
Additionally, in the phosphate-removing system, phosphate
at 2 mg/L as P inhibited Al hydrolysis, and the adverse effect of
fluoride towards Al hydrolysis was lowered accordingly. The
stable Δresidual Al at different RF:Al inferred the determining
role of Al–F complex formation in the inhibition of phosphate
removal at pH 6. At elevated pH 7 and 8, the formation of Al–F
complexes was slight and little effect was observed thereafter.

2.3. Al–F complex formation at different pH

Fig. 6 illustrates the ratios of complexed-F to total fluoride in
the treated water after removing particulate fluoride by
0.45-μm membrane filtration. The ratios of complexed-F
decreased with elevated RF:Al values, owing to less Al being
available for Al–F complex formation. Additionally, the ratios of
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Fig. 4 – Effects of fluoride at different RF:Al on Cd removal, ζ-pote
Cd-removing system at Al dose of 30 mg/L as Al.
complexed-F decreased with increasing pH, and free fluoride
was the dominant species at pH above 6 in both systems for the
removal of Cd and phosphate. The dissociation of complexed-F
to free fluoride was ascribed to the strong competition of OH−

towards Al as high pH levels (Gong et al., 2012). Furthermore,
phosphate inhibited Al–F complex formation, and the observed
ratios of complexed-F were lower than those in the
Cd-removing system. MINTEQ modeling indicated that the
formation of Al-PO4 species (i.e., Al2PO4

3+, AlHPO4
+) did occur;

however, the ratio was as low as below 4.5% (Fig. S5). The
consumption of Al salts by phosphate was negligible. The lower
complexed-F ratios in the P-removing system were attributed
to the inhibition of the Al fluoride interaction by phosphate.

2.4. Proposed dominant Al fluoride interactions at different pH
and RF:Al

The effects of fluoride on the removal of Cd and phosphate by
Al coagulation were dependent on the species distribution of
Al and fluoride, RF:Al, and the interactions among these
species. The species distribution of Al and F and the main
reactions over wide equilibrium pH and RF:Al ranges are
illustrated in Fig. 7.

Before being dosed, the species distribution of Al and F in
the mixed solution was mainly dependent on RF:Al, and free
fluoride existed at RF:Al > 1 whereas free Al was present at
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RF:Al < 1 (Fig. 7a). pH also played a role, and the dissolution of
Al–F complexes to free F− occurred at high RF:Al owing to the
elevated pH (Fig. S1).

After being dosed, the equilibrium pH impacted the main
reactions involved and the species distribution of Al and F
thereafter (Fig. 7b). In the case with free Al present (RF:Al < 1),
the hydrolysis and polymerization of Al3+ occurred at pH above
4 (Georgantas and Grigoropoulou, 2007) (Eqs. (3)–(4)), and the
ratios of each Al polymer with different extent of polymeriza-
tion (Al3–Al21) were highly dependent on pH (Zhao et al., 2009).
Al3+ and the hydrolyzed Al(III) species tend to form Al–F
complexes at acidic pH (Eqs. (2) and (5)), which can be rapidly
achieved within several seconds (Plankey et al., 1988). At
pH > 5, Al–F complexes dissociated into free fluoride (Eq. (6)),
owing to the competition of OH− towards Al (Gong et al., 2012).
Additionally, Al–F complexes may directly react with OH− and
form insoluble AlFm(OH)n precipitates (Eq. (7)), and free F− and
Al–F complexes can also adsorb onto Al(OH)3 precipitates
(Eqs. (8)–(9)). These two effects contributed to the transforma-
tion of free fluoride to insoluble fluoride, and the removal of
total fluoride thereafter (Fig. S6). At elevated pH, the dissolution
of insoluble Al(OH)3, AlFm(OH)n, and Al(OH)nFm into soluble Al
species occurred (Eqs. (10)–(12)), and the levels of free fluoride
and soluble Al increased accordingly. The species distribution
of fluoride and Al in different pH and RF:Al ranges is illustrated
in Fig. 7c. It was noted that the formation of CdF+ complexes
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and Al-PO4 species did occur; however, these reactions were
ignored due to their low ratios (Figs. S5 and S7).

Al3þ þ nOH−→Al OHð Þ 3−nð Þþ
n ð3Þ

nAl3þ →OH
‐

Almþ
n ð4Þ

Al OHð Þn 3−nð Þþ þmF−→Al OHð Þn Fm ð5Þ

Al–Fn complexes→Al–Fn−m complexesþmF− ð6Þ

Al–Fmþpcomplexesþ nOH−→Al–Fm OHð Þncomplexesþ pF− ð7Þ

Al OHð Þ3 þ nF−→Al OHð Þ3 Fn ð8Þ

Al–Fpcomplexes þ nAl OHð Þ3→Alnþ1 OHð Þ3n Fp ð9Þ

Al OHð Þ3 þ OH−→AlO2
− þ 2H2O ð10Þ

AlFm OHð Þn →OH
−

soluble Al þ mF− þH2O ð11Þ

Al OHð Þn Fm →OH
−

solubleAl þ mF− þ H2O ð12Þ

The Al–fluoride interactions and their species distribution
contributed to the observed varying trends of ζ-potential and
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Fig. 7 – Proposed main species distribution and transformation of Al and F over wide equilibrium pH and RF:Al ranges. a:
Dominant species of Al and F in the mixed solution of AlCl3 and NaF prior to dosing; b: species distribution of F and Al; c: main
reactions between Al and F over a wide pH rang after being dosed.
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residual Al, and the effect of fluoride on the removal of Cd and
phosphate by Al coagulation was highly dependent on pH and
RF:Al (Table S2). Briefly, the removal of neither Cd nor
phosphate was affected by fluoride at RF:Al of below 1:1 in a
wide pH range; however, fluoride at RF:Al > 3:1 showed
significant adverse effects on their removal. Additionally, the
inhibitive effect of fluoride was pH dependent, and its
remarkable inhibition of Cd removal was observed in neutral
and basic pH of 7 and 8, whereas that on phosphate removal
was prominent in weakly acidic pH of 5 and 6.

The Cd ion rarely participates in Al hydrolysis, and its
removal may be mainly achieved by the formation of
outer-sphere complexes between Cd and the hydroxyl groups
on the surfaces of Al(OH)3, AlFm(OH)n, and Al(OH)nFm. The
oxygen on adsorbent surfaceswas reported to be a strong Lewis
base and tended to form complexes with Cd(II) ions as electron
acceptors (Cooper et al., 2002). As for phosphate, the formation
of insoluble Al-PO4 precipitates such as Al2PO4

3+ and AlHPO4
+

may play a role; however, this effect is relatively low. The
removal of phosphate may be mainly attributed to its
incorporation into stabilized colloids via sweep flocculation
and to its attachment onto the surfaces of Al(OH)3, AlFm(OH)n,
and Al(OH)nFm. Besides this, other mechanisms such as
electrostatic attraction, ionic exchange, and surface micro-
precipitationmay also be involved in their removal, and further
studies are required to elucidate the mechanisms.
c.c
n

3. Conclusions

Fluoride adversely affects the removal of both Cd and phosphate
by Al coagulation, and the extent of this effect is highly
dependent on pH and RF:Al. Fluoride shows an inhibitive effect
on the removal of Cd at RF:Al ≥ 3:1, whereas at low RF:Al a slight
beneficial effect is interestingly observed. The removal of
phosphate decreases at either high levels of fluoride (RF:Al =
10:1) or insufficient Al doses of below 2 mg/L as Al. Fluoride
inhibits rather than improves Cd removal over a wide pH range,
although it does lower ζ-potential. Fluoride inhibits the removal
of phosphate at the acidic pH 6, and the formation of Al–F
complexes plays an important role. At pH 7 to 8, fluoride shows
little effect on phosphate removal due to the dissociation of Al–F
complexes into free F−. Moreover, phosphate inhibits Al–F
complex formation and the removal of total fluoride. This study
promotes the understanding of the removal of heavymetals and
phosphate by Al coagulation in the simultaneous presence of
fluoride. Besides this, this study also indicates the feasibility of
using the spent in-situAl2O3·xH2Owith adsorbed fluoride, after its
being dissolved by acid solution, for the removal of Cd and
phosphate. As for the spent in-situ Al2O3·xH2O with adsorbed
fluoride obtained from real treatment plants, the RF:Al is critically
low at below 0.1:1, and the adverse effect of fluoride is slight.
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