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Abstract
Organic phosphorus (nonreactive P, NRP) is a major component of P in sediments, but information about its chemical forms and
dynamic transformation is limited. The chemical forms and dynamic behaviors of NRP in a sediment profile from Lake Taihu,
a freshwater and eutrophic lake in China, were investigated. Five forms of NRP in the sediments were extracted based on a
chemical fractionation technique, including easily labile NRP (NaHCO3-NRP), reactive metal oxide-bound NRP (HCl-NRP), humic
acid-associated NRP (NaOH-NRPHA), fulvic acid-associated NRP (NaOH-NRPFA) and residual NRP (Res-TP). There were notable
transformations with increasing sediment depth from the labile NaHCO3-NRP and NaOH-NRP pools to the recalcitrant HCl-NRP and
Res-TP pools, which caused the NRP to become increasingly recalcitrant as the early diagenetic processes proceeded. Further analyses
showed that the relative changes in contents of organic matter and reactive Fe oxides in the sediment profile triggered a competition for
binding NRP fractions and led to the transformation of NRP. The results highlighted the importance of abiotic processes in regulating
the diagenesis of organic P and its stability in sediments.

Key words: organic phosphorus; fractionation; transformation; Lake Taihu; sediment
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Introduction

As a major nutrient in aquatic biology, phosphorus (P)
has been recognized as the most critical nutrient limiting
primary productivity and regulating lake trophic status.
Increased concentration of P in the water column, ini-
tially from increased external inputs of P, has been the
primary factor responsible for accelerated eutrophication
(Schelske, 2009). Sediment is usually a major sink for P
in lakes, and contains a very large P pool in comparison
to that in the water column. Accordingly, sediment plays
an important role in the P metabolism in lakes, especially
when external inputs are reduced (Søndergaard et al.,
2007).

Phosphorus occurs naturally in sediments in both inor-
ganic and organic forms. Compared to inorganic P, which
has been studied intensively for a long time, organic P
in sediments has received much less attention. Organic

* Corresponding author. E-mail: smding@niglas.ac.cn

P originates from both allochthonous and autochthonous
sources, and may constitute a major proportion of the P
settling into the sediment (Reitzel et al., 2007). Previous
studies revealed that degraded organic P could be an impor-
tant source for water column P (Søndergaard et al., 1996;
Rydin, 2000; Kaiserli et al., 2002), and could maintain
a low magnitude, long-term release of P for most of the
year (Spears et al., 2007). The contribution of organic P
in a eutrophic lake was found to be greater than that in
an oligotrophic lake (Gonsiorczyk et al., 1998). On the
other hand, a considerable amount of organic P compounds
has been found in deep sediments, despite some of them
being easily degraded at the molecular level (Ahlgren et
al., 2005; Reitzel et al., 2007). A dynamic mechanism may
be involved in the stabilization of organic P in sediments
during the early diagenetic process. However, little is
known about this mechanism.

Organic P cannot be directly detected by the molybde-
num blue method and is traditionally treated as nonreactive

http://www.jesc.ac.cn
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P (NRP) in sediments. In sequential extraction schemes
concerning primarily inorganic P, organic P in sediments
is usually treated as a residue or refractory fraction (Rut-
tenberg, 1992; Ruban et al., 1999), or its labile fraction is
pre-recovered in alkaline solutions (e.g., 0.1 mol/L NaOH)
(Lukkari et al., 2007). In addition to simple differentiation
and quantification of organic P, conventional characteriza-
tion of organic P forms is accomplished through chemical
fractionation techniques initially developed in soil sci-
ences. In these techniques, organic P in soils is separated
into operationally defined fractions based on presumed
chemical stability using an acid-alkali sequence of ex-
tractions (Bowman and Cole, 1978; Sharpley and Smith,
1985; Ivanoff et al., 1998). Fractionation of organic P
in sediments has also been attempted through acid-alkali
or chelating compound sequential extractions (De Goot,
1990; Oluyedun et al., 1991; Golterman, 1996). However,
systemic applications have been scarce (Zhang et al., 2008;
Zhou et al., 2008).

The purpose of this study was to investigate the spe-
ciation of organic P and its transformation in a sediment
profile of Lake Taihu, a large, shallow, eutrophic lake in
China. The dynamic transformation of organic P was an-
alyzed by assessing the relationships among those forms.
The possible mechanisms involved in the transformation
were discussed.

1 Materials and methods

1.1 Description of the site studied

The rapid expansion of industry and agriculture around
Lake Taihu has brought large quantities of nutrients to this
lake since the 1980s. The concentrations of nutrients have
dramatically increased in the water column and sediments.
This phenomenon was particularly obvious in Meiliang
Bay, which is one of the most eutrophied regions in this
lake, largely due to sewage discharges from the Liangxi,
Chihugang and Wujingang Rivers. Total nitrogen in the
water column of this bay has increased from 1.8 mg/L
in 1991 to 4.1 mg/L in 2006, and total P has increased
from 0.07 mg/L in 1991 to 0.26 mg/L in 2006 (Zhu,
2008). Meanwhile, P content in the surface sediments was
detected at levels as high as 1800 µg/g, which was more
than three times that in the center of the lake (Bai et
al., 2009). The enrichment of nutrients in this bay has
caused the onset of a eutrophication phase and associated
degradation of its ecological status since the mid-1980s
(Chen et al., 2003).

The sampling site was located in the northern part of
Meiliang Bay (120.19◦E and 31.51◦N), which is close to
the outlet of the River Liangxi (with a distance of approx-
imately 4 km) (Fig. 1). The depth of the soft sediment
which is covered by a 2.2-m water layer, is more than
50 cm. According to monthly monitoring data from the
Taihu Laboratory for Lake Ecosystem Research, average

Meiliang bay

Lake Taihu

N

Liangxi River

Wuxi City

Sampling site

Fig. 1 Location of the sampling site in Meiliang Bay of Lake Taihu,
China.

annual concentrations of dissolved O2, total P, total N and
chlorophyll a in the water column of this site were 8.95
mg/L, 0.16 mg/L, 5.43 mg/L and 25.1 µg/L, respectively,
during 2001 and 2006. These parameters are representative
of eutrophic and polluted regions in Meiliang Bay.

1.2 Sampling

Six sediment cores were collected using a gravity core
sampler in November 2007. Each core was sliced into
0.5 cm sections down to 10 cm, and then into 2.5 cm
sections down to 15 cm, under an N2 atmosphere. The
sediments from the six parallel cores were pooled at equal
depths and homogenized to obtain a representative sample.
The sediments were transported to the laboratory. Some
were stored at 4°C, while the majority were lyophilized at
–80°C, sieved to pass through a 100-mesh sieve and then
stored at 4°C until analysis.

1.3 Sediment property analysis

Sediment pH was determined in a suspension of deionized
water using a sediment/water ratio of 1:2.5 (m/V) (Lu,
1999). Sediment P, Fe, Al, Mn and Ca were measured
using an inductively coupled plasma atomic emission spec-
troscopy (ICP-AES, Perkin-Elmer DV4300, USA) after
fusing 0.05 g (dry weight) sediment with 0.2 g LiBO2,
followed by dissolution with 4% HNO3 (Lu, 1999). Total
NRP was determined by extracting P from the sediments
after removal of reactive P (RP) using 1 mol/L HCl
extraction, followed by combustion of the sediment at
450°C for 3 hr (Ruban et al., 1999). Concentrations of P
in solutions were measured using the molybdenum blue
method (Murphy and Riley, 1962). The content of organic
matter in the sediment was measured by loss on ignition
(LOI) through calcination of the sediment at 550°C for 6
hr. The errors (RSD%) for three duplicate analyses of these
parameters were mostly less than 4%.

1.4 Fractionation of organic phosphorus

The organic P (NRP) in sediments was fractionated
based on the scheme developed by Ivanoff et al. (1998)
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0.5 M NaHCO3 (pH 8.5)

16 hr extraction

1 M H2SO4

24 hr extraction

1.0 g sediment (dry weight)

Residue

Residue Ashingat 550°C for 1 hr 

NaHCO3-NRP

NaHCO3-RP

Res-TP

Residue

Rinsed with

deionizedwater

Total P

1 M HCl

3 hr extraction

HCl-RP

HCl-NRP

Total P

0.5 M NaOH

16 hr extraction

NaOH-RP

Total P

pH 0.2

NaOH-NRP

NaOH-NRPHA

Centrifuge 
NaOH-NRPFA

RP

Rinsed with deionizedwater

Residue

0.5 mol/L NaHCO3

1 mol/L HCl

0.5  mol/L NaOH

1.0  mol/L H2SO4

Total P

Fig. 2 Scheme used for fractionation of nonreactive P (NRP) in sediments according to Zhang et al. (2008), slightly modified from Ivanoff et al. (1998).

Table 1 Physical and chemical properties of the sediments investigated

Depth (cm) pH LOI (%) Sediment (g/kg) HCl extracted (g/kg)
Al Fe Mn Ca Al Fe Mn Ca

0–0.5 7.44 5.71 36.9 35.1 0.95 3.34 3.30 11.4 1.08 3.24
0.5–1 7.48 6.47 44.0 36.2 1.01 3.68 3.38 11.7 1.08 3.13
1–1.5 7.56 5.80 45.7 37.0 1.01 3.65 3.37 11.7 1.03 3.23
1.5–2 7.39 5.65 45.0 36.9 0.97 3.91 3.42 11.9 1.01 3.29
2–2.5 7.54 5.75 36.4 37.1 0.92 2.83 3.36 12.0 0.98 3.41
2.5–3 7.46 6.28 37.6 36.2 0.88 3.40 3.38 12.2 0.98 3.60
3–3.5 7.37 5.44 44.1 37.3 0.94 4.04 3.34 11.8 0.93 3.55
3.5–4 7.45 5.47 38.7 34.6 0.84 3.27 3.35 11.5 0.87 3.47
4–4.5 7.39 5.38 35.6 34.0 0.78 3.08 3.36 11.7 0.86 3.40
4.5–5 7.49 5.74 54.9 38.2 0.97 4.91 3.39 12.2 0.82 3.52
5–5.5 7.45 6.01 33.4 35.3 0.74 3.04 3.37 11.9 0.77 3.47
5.5–6 7.43 6.21 33.5 36.0 0.70 2.90 3.34 12.6 0.75 3.50
6–6.5 7.33 6.08 41.5 36.6 0.79 3.56 3.34 12.5 0.71 3.49
6.5–7 7.47 5.87 37.0 35.4 0.67 3.27 3.36 12.7 0.68 3.32
7–7.5 7.35 5.01 37.7 35.5 0.67 3.53 3.31 12.5 0.65 3.22
7.5–8 7.38 5.26 39.3 35.8 0.65 3.42 3.34 12.8 0.62 3.10
8–8.5 7.27 5.15 37.7 34.7 0.62 3.32 3.26 12.4 0.57 3.04
8.5–9 7.21 4.56 36.0 35.6 0.58 3.07 3.32 12.7 0.55 3.09
9–9.5 7.32 5.13 37.9 34.9 0.59 3.02 3.36 12.6 0.54 2.93
9.5–10 7.23 4.13 51.5 36.9 0.67 4.33 3.3 12.8 0.51 2.90
10–12.5 7.19 4.60 31.2 35.6 0.50 2.48 3.31 12.5 0.44 2.57
12.5–15 7.21 3.98 36.8 32.9 0.46 3.21 3.28 12.2 0.40 2.45
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with by a slight modification by Zhang et al. (2008).
The fractionation scheme is presented in Fig. 2. The
forms of NRP included 0.5 mol/L NaHCO3-extracted
NRP (NaHCO3-NRP), 1 mol/L HCl-extracted NRP (HCl-
NRP), 0.5 mol/L NaOH-extracted NRP (NaOH-NRP) and
residual P (Res-TP), and the forms of inorganic P (RP)
were correspondingly defined as NaHCO3-RP, HCl-RP
and NaOH-RP. An aliquot of the NaOH extract was
further acidified with concentrated HCl to pH 0.2 and
centrifuged at 10,000 r/min. The supernatant was analyzed
to determine NaOH-NRPFA (FA refers to fulvic acid),
whereas the NaOH-NRPHA (HA refers to humic acid) was
estimated by subtracting NaOH-NRPFA from NaOH-NRP.
The concentration of the NRP in each extract was deter-
mined by subtracting RP from total P, while concentrations
of total P were measured using the molybdenum blue
method after acid persulfate digestion (Koroleff, 1983).
Concentrations of Fe, Al, Ca and Mn in the HCl extracts
were simultaneously determined by ICP-AES.

Definitions of organic P forms in the fractionation
scheme were mainly based on their binding phases in
sediments. The NaHCO3-NRP, HCl-NRP, NaOH-NRPHA
and NaOH-NRPFA were attributed to easily labile NRP,
reactive metal oxide-bound NRP, humic acid-associated
NRP, and fulvic acid-associated NRP, respectively.

Multiple analyses (n = 6) of a sediment sample from
the sediment profile selected using the above fractionation
technique showed that the analytical errors (RSD%) were
mostly within 12% for total P and RP and 25% for NRP
during the various steps.

1.5 Statistics

The relationships between organic P forms were investigat-
ed using the Pearson correlation coefficient (two-tailed).
The statistical analyses were performed using SPSS ver.
11.5.

2 Results and discussion

2.1 Sediment properties

The chemical properties of the sediments varied with
sediment depth (Table 1). Sediment pH remained near
7.4 in the upper 8 cm, but below this depth it decreased
slightly to 7.2. Sediment LOI was above 5.3% and showed
no notable changes with depth in the upper 6 cm layers, but
below this depth it decreased to 4.0%. Sediment Al, Fe and
Ca showed no clear trends with depth, but sediment Mn
decreased by 50% from the uppermost layer to the deepest
layer. The variations in sediment properties with depth
were generally in line with other investigations conducted
in Lake Taihu (Zhao et al., 2007; Yin et al., 2008) and in
Lake Dongjiu near an estuary of Lake Taihu (Wu et al.,
2007).

Extraction with 1 mol/L HCl recovered total Mn 96%
± 8% and most of the Ca 93% ± 12%, but only minor

amounts of Fe 34% ± 2% and Al 9% ± 1%. Fe was
dominant in the extracts, accounting for 62% ± 2% of
the total metals extracted. It had an overall increase with
sediment depth in the deeper 10 cm layer. The concentra-
tion of Al extracted remained stable over the whole profile.
Extracted Mn followed the same pattern as sediment Mn.
The concentration of extracted Ca remained stable in the
upper 6.5 cm sediment layers, and below this it showed an
evident decrease. These extracted metals were considered
active in sediments (Burton et al., 2005). The dominance
of reactive Fe implied that it may play an important role in
P speciation in sediments.

2.2 Total P and organic P in the sediments

The concentration of total P remained relatively high and
stable within the upper 2.0 cm of the sediments (RSD =
3%), and below this it decreased (Table 2). The concentra-
tion of NRP generally followed the same pattern, and the
change occurred at a depth of approximately 2.5 cm (RSD
= 6% within the upper 2.5 cm). The vertical distributions
of total P and NRP in the sediments were similar to
those observed in previous investigations in northern Lake
Taihu (including Meiliang Bay), which typically exhibited
higher concentrations in the upper layers followed by an
exponential decrease with increasing depth (Kelderman et
al., 2005; Trolle et al., 2009).

Both Kelderman et al. (2005) and Trolle et al. (2009)
suggested that the variability of sediment P in Lake Taihu
was driven by the differences in external nutrient loading.
This was well demonstrated by the horizontal variability
of P in the surface sediment, which showed a decreasing
trend from the northern region to the center of Lake
Taihu, with a decrease in concentration of total P in the
water column (Trolle et al., 2009). The high and constant
concentrations of total P and NRP in the upper sediment
layers observed in this study was thus likely caused by a
high and relatively stable external nutrient loading during
sedimentation. However, we could not exclude the possi-
bility of P migration from deeper sediment layers, because
the enrichment of total P in the surface sediments could
occur in the absence of external influences (Søndergaard
et al., 1996). A further investigation showed that the
concentrations of total P and NRP in the deeper sediment
layers (below 5 cm) had significantly positive correlations
with sediment LOI (r = 0.56, p = 0.04 and r = 0.65,
p = 0.02, respectively), suggesting that the decrease in
total P and NRP in the deeper sediments likely originated
from a decrease in sediment organic matter. This decrease
was possibly caused by degradation or decreased external
input.

2.3 Chemical forms of organic P

Fractionation of sediment NRP using the sequential ex-
traction technique yielded a recovery of 96% ± 4% for
the whole profile, suggesting that the fractionation had
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Table 2 Concentrations of total P, NRP and the fractionated RP and NRP forms in the sediments

Depth Total P Total NRP NaHCO3-NRP HCl-NRP NaOH-NRPHA NaOH-NRPFA Res-TP Recovery NaHCO3-RP HCl-RP NaOH-RP
(cm) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)

0–0.5 1036 382.2 34.22 139.2 72.41 63.94 56.17 95.8% 94.67 372.3 187.6
0.5–1 1004 349.7 34.24 116.5 52.09 83.99 59.27 99.0% 90.60 394.4 176.3
1–1.5 1051 382.6 35.16 130.4 34.03 81.37 81.66 94.8% 96.24 392.7 200.3
1.5–2 1085 377.1 26.01 130.0 36.45 79.78 72.83 91.5% 105.3 387.6 200.0
2–2.5 1061 426.8 30.72 161.4 36.10 86.85 79.09 92.3% 99.21 366.7 196.3
2.5–3 1008 349.9 18.92 138.1 24.02 93.57 69.95 98.5% 99.38 372.7 186.9
3–3.5 994 326.9 15.37 133.2 24.57 86.31 74.39 102.1% 81.28 399.7 177.9
3.5–4 946 344.7 14.61 134.6 30.69 81.35 75.27 97.4% 74.58 391.2 169.3
4–4.5 950 360.2 20.13 152.1 41.01 70.74 66.24 97.2% 72.70 357.3 191.1
4.5–5 968 361.2 11.73 147.1 58.89 56.13 71.94 95.7% 58.61 326.6 185.4
5–5.5 892 355.1 14.74 153.1 70.10 42.26 64.84 97.2% 64.12 326.6 189.0
5.5–6 927 345.9 13.20 151.2 56.17 45.85 61.63 94.8% 55.71 332.2 171.5
6–6.5 844 328.9 10.75 128.7 58.29 58.19 65.98 97.8% 55.62 340.0 175.3
6.5–7 853 302.9 10.87 110.1 71.06 5.16 68.69 98.0% 54.95 358.0 163.7
7–7.5 865 346.6 15.03 159.1 47.40 49.82 63.79 96.7% 51.26 281.6 170.5
7.5–8 850 326.3 5.63 150.3 44.93 50.56 65.27 97.0% 51.84 288.7 177.8
8–8.5 814 310.2 5.79 119.6 49.02 46.24 60.17 90.5% 54.38 310.8 179.2
8.5–9 835 296.3 8.68 120.6 49.93 39.64 63.67 95.4% 49.31 304.2 160.0
9–9.5 802 300.3 11.64 113.1 53.12 50.65 76.53 101.6% 44.89 280.6 162.7
9.5–10 817 305.1 1.28 119.4 38.77 52.26 63.34 90.1% 49.45 288.5 161.5
10–12.5 772 283.6 5.37 146.7 22.12 44.01 67.86 100.9% 41.86 278.3 161.7
12.5–15 792 311.2 1.22 156.3 39.39 36.39 65.59 96.1% 42.80 251.4 161.0
Average 917 339.7 15.7 136.9 45.93 60.68 67.92 96.4% 67.70 336.5 177.5

satisfactory recovery (Table 2). Concentrations of the
forms of NRP were ranked in the order of HCl-NRP >
Res-TP > NaOH-NRPFA > NaOH-NRPHA > NaHCO3-
NRP with average values of 136.9, 67.92, 60.68, 45.93
and 15.70 mg/kg, respectively. Concentrations of the forms
of RP were ranked in the order of HCl-RP > NaOH-RP
> NaHCO3-RP with average values of 336.5, 177.5 and
67.70 mg/kg, respectively.

The NaHCO3-NRP is the part of NRP easily released
from metal compounds or organic materials, while Res-
TP is composed of highly stable organic materials such as
lignin and organometallic complexes (Ivanoff et al., 1998).
The HCl-NRP was associated originally with Ca, Fe and
Al mineral phases in the sediments, because sediment Ca,
Fe and Al were recovered at this extraction step (Table 1).
It has been found that the surfaces of Fe and Al oxides
and clays have a high affinity for adsorption of organic P
compounds (Leytem et al., 2002; Berg and Joern, 2006),
whereas Ca forms precipitates with inositol hexakisphos-
phate, a major component of orthophosphate monoesters
in natural environments (Celi et al., 2000). A positive
correlation was found between LOI and NaOH-NRP in
the sediments (r = 0.89, p < 0.001), demonstrating that
both NaOH-NRPFA and NaOH-NRPHA were associated
with organic matter in the sediments. Organic matter has
been considered to be a major carrier of organic P in
soils or sediments, which can retain a range of organic
P compounds through physical or chemical incorporation,
direct surface adsorption or indirect adsorption via cation
bridges (Celi and Barberis, 2005).

The proportions of each form of NRP varied with
sediment depth (Fig. 3). The proportion of NaHCO3-NRP
remained stable within the upper 1.5 cm of sediments,
but it continually decreased below this depth and almost
disappeared at the deepest layer. The proportion of HCl-

NRP showed an increasing trend with the increase of
depth. The proportion of NaOH-NRPHA showed a “U-
shape” change with depth in the upper 5.5 cm of sediments.
Below 5.5 cm, NaOH-NRPHA exhibited a decreasing trend.
The proportion of NaOH-NRPFA showed an opposite trend
to NaOH-NRPHA in the upper 5.5 cm, below which its con-
centration was fairly uniform with depth. The proportion of
Res-TP showed a strong increase with depth in the upper
1.5 cm of sediment, but then remained stable to a depth of
4 cm, below which it slightly increased.

The rapid decline of NaHCO3-NRP below a depth of
1.5 cm indicated that this form of NRP was likely labile
(Fig. 3). It has been found to be easily mineralized in
soils and could contribute to plant-available P (Ivanoff
et al., 1998). Both NaOH-NRPFA and NaOH-NRPHA had
no evident change with sediment depth, but their com-
bined concentration (i.e., NaOH-NRP) tended to decrease
with sediment depth, reflecting their lability during early
diagenetic processes. In contrast, the proportions of HCl-
NRP and Res-TP showed overall increases with depth,
indicating that the two forms were sinks of NRP during
early diagenetic processes. In particular, the sharp increase
in Res-TP in the upper 1.5 cm might reflect a rapid
transformation of NRP from labile to recalcitrant forms.

2.4 Organic phosphorus transformation

The relationships of different forms of NRP were in-
vestigated, which may provide valuable information on
their transformations. Taking into account the differences
in vertical changes of NaOH-NRPHA and NaOH-NRPFA
between the upper 5 cm and the layers below, correlations
between each form of NRP were investigated separately
in the two layers (Table 3). In the upper 5 cm, NaHCO3-
NRP was found to be negatively correlated with HCl-NRP
and Res-TP, likely indicating transformation of NRP from
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Fig. 3 Speciation of chemical forms of NRP in the sediment profile.

NaHCO3-NRP to HCl-NRP and then Res-TP. Negative
correlations were also found for NaOH-NRPHA with both
NaOH-NRPFA and Res-TP. The sharp decrease in NaOH-
NRPHA in the upper 3 cm reflected a transformation of
NRP from NaOH-NRPHA to NaOH-NRPFA and Res-TP.
An opposite and rapid transformation should then occur
from NaOH-NRPFA to NaOH-NRPHA between 3 and 5
cm, reflected by the sharp increase of NaOH-NRPHA and
decrease of NaOH-NRPFA in this section (Fig. 3). In
the layers below 5 cm, the only correlation found was
a negative correlation between NaOH-NRPHA and HCl-
NRP, indicating a transformation from NaOH-NRPHA to
HCl-NRP.

For the whole sediment profile, the increase in recalci-
trant HCl-NRP was attributed to the transformation from
NaOH-NRPHA (with 8% of the total organic P in sediments
involved) and NaHCO3-NRP (6%), and the increase in
recalcitrant Res-TP was from NaOH-NRPHA (5%) and
NaHCO3-NRP (2%). A consistent transformation of NRP
thus occurred from the labile (i.e., NaHCO3-NRP and
NaOH-NRPHA) to the recalcitrant forms (i.e., HCl-NRP
and Res-TP). As a result, organic P in the sediments
became increasing recalcitrant as the early diagenetic
processes proceeded.

2.5 Dynamic mechanisms for organic P transformation

The dynamics of NRP in the environment are controlled by
abiotic degradation and stabilization, enzymatic hydrolysis
and microbial turnover, etc. Previous studies have revealed

that the binding phases can play a dominant role in
regulating RP behaviors in sediments (Christophoridis and
Fytianos, 2006). Similar situations may appear during ear-
ly diagenesis of NRP in sediments. In this study, the ratio
of HCl-extracted Fe to LOI showed a strong increase from
0.20 in the uppermost sediment layer to 0.30 in the deepest
sediment layer (Fig. 4), likely implying a corresponding
increase in the capacity of reactive Fe oxides to bind NRP
fractions. A positive correlation was further found between
the ratios of HCl-extracted Fe to LOI and HCl-NRP to
NaOH-NRP (Fig. 4). This demonstrated that the relative
changes in contents of reactive Fe oxides and organic
matter had resulted in a competition for binding NRP and
caused the observed transformation from NaOH-NRP to
HCl-NRP.

The adsorption of NRP fractions onto reactive Fe ox-
ides has been emphasized in the literature partly due
to their abilities of controlling adsorption and mobility
of phosphates in sediments (Mortimer, 1941; Böstrom
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with sediment depth and the ratio of HCl-NRP to NaOH-NRP.

Table 3 Correlation matrix for chemical forms of NRP from the upper 5 cm and deeper 10 cm sediments

NaHCO3-NRP HCl-NRP NaOH-NRPHA NaOH-NRPFA Res-TP

Upper 5 cm
NaHCO3-NRP 1.000 –0.833∗∗ 0.266 –0.040 –0.581∗

HCl-NRP 1.000 –0.166 –0.026 0.328
NaOH-NRPHA 1.000 –0.723** –0.739**
NaOH-NRPFA 1.000 0.505
Res-TP 1.000

Deeper 5 cm
NaHCO3-NRP 1.000 –0.388 0.585∗ –0.153 –0.144
HCl-NRP 1.000 –0.867∗∗ 0.006 –0.075
NaOH-NRPHA 1.000 –0.348 –0.069
NaOH-NRPFA 1.000 0.254
Res-TP 1.000

* and ** show the significance at p < 0.05 and p < 0.01 levels, respectively.
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and Pettersson, 1982; Amirbahman et al., 2003). Several
studies reported the adsorption of organic P compounds
onto pure reactive Fe oxides (Celi et al., 2005; Ruttenberg
and Sulak, 2011), but relevant studies in aquatic systems
are limited (Huang and Zhang, 2010).

In this study, the sediments of Lake Taihu contained
high levels of Fe (Table 1). Reactive Fe was not only the
dominant reactive metal but also the only one exhibiting an
increasing trend in concentration over a broad depth range
(in the upper 10 cm). These features might have enabled
reactive Fe oxides to play a vital role in stabilization of
NRP in sediments. Although the adsorption by reactive Fe
oxides may decrease in deep sediment layers due to their
crystallization or reduction (Martynova, 2010; Ruttenberg
and Sulak, 2011), they can still absorb more organic matter
because of a rapid decrease in organic matter with depth.
Furthermore, degradation of organic matter during early
diagenesis processes may lead to the release of bound NRP
fractions and facilitate the binding of NRP by reactive Fe
oxides.

Other transformations of NRP, such as from NaHCO3-
NRP to HCl-NRP and Res-TP, could be caused by similar
dynamic processes related to changes in binding phases.
However, this remains to be verified because the solid
binding phases of NaHCO3-NRP and Res-TP are un-
known. As the combined concentrations of NaOH-NRP
and HCl-NRP accounted for more than 70% of the total
NRP in the sediments (Fig. 3), the relative changes in the
binding phases should be a major dynamic mechanism
triggering the redistribution of NRP in sediments. This
result highlighted the importance of physical-chemical
adsorption or binding in regulating the diagenesis of NRP
fractions.

3 Conclusions

Five forms of NRP in the sediments were extract-
ed, including NaHCO3-NRP, HCl-NRP, NaOH-NRPHA,
NaOH-NRPFA and Res-TP. Concentrations of the forms
of NRP were ranked in the order of HCl-NRP > Res-
TP > NaOH-NRPFA > NaOH-NRPHA > NaHCO3-NRP,
with average values of 135, 68, 61, 47 and 16 mg/kg,
respectively. The declines in proportions of NaHCO3-
NRP and NaOH-NRP with sediment depth reflected their
lability. In contrast, the increases in the proportions of
HCl-NRP and Res-TP with the increase of depth indicated
that the two forms were sinks of NRP during the early
diagenetic processes. A consistent transformation of NRP
occurred from the labile NaHCO3-NRP and NaOH-NRP
pools to the recalcitrant HCl-NRP and Res-TP pools. As
a result, organic P in the sediments became increasingly
recalcitrant as the early diagenetic processes proceeded.
The relative changes in organic matter and reactive Fe
oxides in the sediment profile triggered a competition for
binding NRP fractions and causing the transformation of

organic P forms.

Acknowledgments

This work was supported by the National Natural Sci-
entific Foundation of China (No. 40871220, 40730528),
the Natural Scientific Foundation of Jiangsu Province,
China (No. BK2010606) and the Nanjing Institute of
Geography and Limnology, Chinese Academy of Sciences
(No. NIGLAS2010KXJ01).

References

Ahlgren J, Tranvik L, Gogoll A, Waldebäck M, Markides K,
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