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Abstract
The distribution and source of the solvent-extractable organic and inorganic components in PM2.5 (aerodynamics equivalent diameter
below 2.5 microns), and PM10 (aerodynamics equivalent diameter below 10 microns) fractions of airborne particles were studied weekly
from September 2006 to August 2007 in Beijing. The extracted organic and inorganic compounds identified in both particle size ranges
consisted of n-alkanes, PAHs (polycyclic aromatic hydrocarbons), fatty acids and water soluble ions. The potential emission sources
of these organic compounds were reconciled by combining the values of n-alkane carbon preference index (CPI), %waxCn, selected
diagnostic ratios of PAHs and principal component analysis in both size ranges. The mean cumulative concentrations of n-alkanes
reached 1128.65 ng/m3 in Beijing, 74% of which (i.e., 831.7 ng/m3) was in the PM2.5 fraction, PAHs reached 136.45 ng/m3 (113.44
ng/m3 or 83% in PM2.5), and fatty acids reached 436.99 ng/m3 (324.41 ng/m3 or 74% in PM2.5), which resulted in overall enrichment
in the fine particles. The average concentrations of SO4

2−, NO3
−, and NH4

+ were 21.3 ± 15.2, 6.1 ± 1.8, 12.5 ± 6.1 µg/m3 in PM2.5,
and 25.8 ± 15.5, 8.9 ± 2.6, 16.9 ± 9.5 µg/m3 in PM10, respectively. These three secondary ions primarily existed as ammonium sulfate
((NH4)2SO4), ammonium bisulfate (NH4HSO4) and ammonium nitrate (NH4NO3). The characteristic ratios of PAHs revealed that the
primary sources of PAHs were coal combustion, followed by gasoline combustion. The ratios of stearic/palmitic acid indicated the
major contribution of vehicle emissions to fatty acids in airborne particles. The major alkane sources were biogenic sources and fossil
fuel combustion. The major sources of PAHs were vehicular emission and coal combustion.

Key words: airborne particles; organic compounds; size distribution; source

DOI: 10.1016/S1001-0742(12)60121-1

Introduction

Recently, a great deal of attention has been paid to
air pollution in urban settings, especially atmospheric
particulates, because they play important roles in many en-
vironmental processes, including indirect and direct effects
on climate (Admas et al., 2001; Jacobson, 2001; Martin et
al., 2004), various biogeochemical cycles, the formation of
photochemical smog and haze, and visibility degradation
by scattering and absorption of electromagnetic radiation
in visible wavelengths (Elias et al., 2009). Atmospheric
particulates can include a complex mixture of inorganic
substances (metal ions, sulfate, ammonium and nitrate)
and hundreds of different organic substances. In general,
inorganic species comprise 25%–50% of the aerosol mass,
predominantly in the form of sulfates, ammonium salts

* Corresponding author. E-mail: wangyf@mail.cnu.edu.cn

and nitrates (Gray et al., 1986). Organic compounds are
the main contributors to fine aerosols in the atmosphere of
highly industrialized urban areas (Xu et al., 2005; Hou et
al., 2006; Rushdi et al., 2006). In Beijing, approximately
40% of the fine aerosol mass is composed of organic
material (He et al., 2001; Dan et al., 2004). Many of
these organic materials, including PAHs and PCBs, are
carcinogenic and mutagenic (Perera et al., 2005; Tsai et al.,
2001; Wu et al., 2005). Atmospheric particles with these
toxic characteristics can readily penetrate into the lungs
and, therefore, are more likely to have short-term and long-
term adverse effects, including worsening of respiratory
symptoms and the development of diseases (André, 2005;
Zheng et al., 2000).

The main sources of atmospheric particles are natural
and anthropogenic sources such as fossil fuel combustion,
industrial processes and non-industrial fugitive sources (Li
et al., 2006; Pio et al., 2001; Duan et al.,2010). In recent
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years, automobile exhaust fumes in urban areas have been
important contributors to air pollution in Beijing (Hao et
al., 2001; Hao and Wang, 2005; Westerdahl et al., 2009).
The total vehicle population in Beijing has almost tripled
in the last 10 years to more than 3 million vehicles and
the increasing trend toward private vehicle ownership is
expected to continue (Liu et al., 2007) .

In this study, aerosol samples were collected from
September 2006 to August 2007 in Beijing and analyzed
for their levels of n-alkanes, PAHs, fatty acids and water
soluble ions. The aims of this study were to understand
the aerosol composition and to characterize the seasonal
variations in aerosol composition. The sources of these
compounds were also discussed.

1 Materials and methods

1.1 Site description and aerosol sampling

Aerosol samples were collected with quartz fiber filters
(Whatman Company, UK) for 24 hr for each sample using
a high-volume air sampler (Anderson, USA) for PM2.5 and
PM10 weekly from September 2006 to August 2007, on
the rooftop of a two-story building in the courtyard of
the Institute of Atmospheric Physics (39◦58′N, 116◦22′E).
Before sampling, the quartz fiber filters were wrapped in
aluminum foil and pre-heated to 500°C for 4 hr to remove
all organic material and conditioned in a constant humidity
desiccator (temperature: 25°C; humidity: 50%) for 24 hr
and weighed. After sampling, the filters were returned to
the desiccator (temperature: 25°C; humidity: 50%) for a
minimum of 24 hr. After being weighed, the filters were
stored in a freezer (–20°C) until subsequent analysis.

1.2 Chemical analysis and quality control

1.2.1 Organic compounds
The analytical procedure used for organic compounds
was described previously (Zheng et al., 2000). Briefly, a
quarter of each filter was ultrasonically extracted three
times, 20 min each time, using 25 mL dichloromethane
(DCM) (HPLC grade, Supelco, USA). The extracts were
combined and filtered through a glass fiber filter and
then concentrated to approximately 5 mL under reduced
pressure at 35°C by a rotary evaporator (Buchi, Sweden),
followed by drying in a gentle nitrogen stream. Then, 10
mL n-hexane was added to the tube and the extracts were
dried again in a gentle nitrogen stream. This extraction
was transferred into a silica chromatography column (30
cm × 1 cm diameter) filled with 5 g silica gel (80–100
mesh, activated at 180°C for 12 hr) and 5 g alundum
(100–200 mesh, activated at 250°C for approximately 12
hr) to separate aliphatic hydrocarbons and PAHs. The
column was sequentially eluted with 70 mL n-hexane and
70 mL of a mixture of hexane and DCM (1:1, V/V).
The two eluted fractions were evaporated using a rotary

evaporator, and the final volume was adjusted to 1 mL
under a gentle nitrogen stream for gas chromatography-
mass spectrometry (GC-MS) analysis.

Another quarter of each filter was ultrasonically extract-
ed three times 20 min each with 25 mL dichloromethane
and extracted twice with ultrapure water 20 min each
time. The extracts were combined, filtered with a glass
fiber filter, concentrated to 1 mL in a rotary evaporator
under reduced pressure, and dried almost to completion
under a gentle nitrogen stream. A solution of 14% BF3 in
methanol (approximately 0.5 mL) was added to the reactor,
which was then sealed with Teflon tape. The samples were
reacted at 100°C for 30 min to convert carboxyl groups to
methyl ester groups. Then, 3 mL of pure water and 0.3
mL of acetonitrile were added to the reaction products,
and the mixture was extracted with 5 mL of n-hexane.
The n-hexane layer was washed twice with pure water and
concentrated to 1 mL in n-hexane for GC-MS analysis.
The purities of DCM, n-hexane, methanol, and acetonitrile
exceeded 99.8%. The trace contaminants did not interfere
with the identification or quantification of the compounds
of interest.

The hydrocarbons, PAHs and acid derivatives were
identified and quantified with a trace GC-MS spectrometer
(Thermo DSQ Finnigan, USA) and an HP-5MS capil-
lary column (30-m-long, 0.25-mm-diameter, 0.25-µm-film
thickness). High-purity helium was used as the carrier gas
at a constant flow rate of 1.0 mL/min. A total of 1 µL
of sample was injected into the GC in splitless mode.
For the aliphatic hydrocarbons and PAH fractions, the
GC temperature was programmed as follows: starting at
50°C (5 min), increased to 180°C at 150°C/min and held
for 5 min, then ramped to 280°C at 5°C/min and held at
280°C for 15 min. For fatty acid methyl ester analysis,
the temperature was held at 50°C for 5 min, ramped to
280°C at 5°C/min and held at 280°C for 20 min. The mass
spectrometer was operated in electron impact (EI) mode
at 70 eV and fully scanned, ranging from 50 to 550 amu.
The identification of organic compounds was performed
using m/z mass chromatography, and the mass spectra were
compared with standards from the National Institute of
Standards and Technology 2005.

All analytical procedures were monitored using strict
quality assurance and control measures. Lab blanks, field
blanks and solvent blanks were used to determine back-
ground contamination; they showed no detectable PAHs.
The purities of DCM, n-hexane, methanol, and acetonitrile
exceeded 99.8%. Phthalate esters were the main contam-
inants found in the blanks. These trace contaminants did
not interfere with the identification or quantification of
the compounds of interest. The proposed method showed
satisfactory precision and accuracy. Due to its volatility,
most naphthalene was distributed mainly in the gas phase;
however, naphthalene was not considered in this study.
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1.2.2 Water-soluble ions
The analysis of water-soluble ions in aerosol samples
was carried out by an Ion Chromatography System (ICS-
1600, Dionex, USA) at the State Key Laboratory of
Atmospheric Boundary Layer Physics and Atmospher-
ic Chemistry, Institute of Atmospheric Physics, Chinese
Academy of Sciences, following the procedures in Gao
and Zhao (2008). Briefly, a quarter of the mixed cellulose
ester filter was cut and put into an acid-cleaned test
tube, and ultrasonically extracted for about 0.5 hr with
50 mL deionized water (conductivity: 18.2 MΩ·cm). The
extract was filtered before ion chromatography (ICS-1100,
Dionex, USA) analysis. An AS11 analytical column (2 ×
250 mm2, Dionex) was employed for the determination
of selected anions (chloride, nitrite nitrate, and sulfate).
Selected cations (sodium, potassium, ammonium, magne-
sium and calcium) were determined by the same IC system
with a CS12A analytical column (2 × 250 mm2, Dionex),
using methane sulfuric acid (MSA) (EGC II MSA, Dionex)
as the eluent. The lowest detection limit for all the above
ions was 0.3 µg/m3.

2 Results and discussion

Summary data concerning the total concentrations of
organic pollutants(C18–C35 n-alkanes, 16 PAHs, and 25
fatty acids) and water soluble inorganic ions determined
in the sampling periods are presented in Table 1. The
seasons were defined based on the temperatures and the
fuel consumption characteristics. December to February
was considered to be winter. June to August was defined
to be summer; September to November to be fall; and
March to May to be spring. Higher concentrations were
found in winter than in the other seasons. This finding
may be explained by the fact that in winter, lower ambient
temperature, decreased rainfall and stable atmosphere lead
to easier conversion from the gas phase to the particle
phase and allow concentrations to build up in a shallow

boundary layer.

2.1 n-Alkanes

A total of 18 n-alkanes (ranging from C18 to C35) were
detected. The total n-alkane concentrations ranged from
106.2 to 4368.4 ng/m3 in PM10 and from 70.9 to 2750.3
ng/m3 in PM2.5. The total concentrations of n-alkanes in
Beijing were higher than those found in the other Chinese
cities of Qingdao and Guangzhou (Guo et al., 2003b).
These alkanes were mainly enriched in the PM2.5 samples
(about 74%). For C18–C23, about 86% was found in PM2.5
particles and 69% of C24–C33 was found in PM2.5 particles,
indicating that lower carbon number alkanes were readily
enriched in fine particles.

Figure 1 shows the seasonal distribution diagrams of
the individual alkanes, with no odd-even carbon number
predominance in the C18–C23 range and a slight odd
carbon number preference in the C24–C33 range, which was
characteristic of higher plant wax resources. The carbon
preference index (CPI), which considers the relative abun-
dance of compounds containing odd and even numbers of
carbon atoms, is used to distinguish the two main sources
of n-alkanes, biogenic and anthropogenic activities (e.g.,
fossil fuel and biomass combustion) (de Azevedo et al.,
1999; Cheng et al., 2006; Feng et al., 2006; Rogge et al.,
1993). The carbon number profiles of n-alkanes derived
from natural sources (primarily cuticular waxes of higher
plants) show high CPI values (greater than 3), whereas
a CPI value of approximately 1 implies anthropogenic
influences (fossil fuel combustion) (Schneider et al., 1983;
Simoneit, 1984). The mean CPI were 1.28, 1.25, 1.25, and
1.04 in PM2.5 and 1.43, 1.11, 1.32, and 1.14 in PM10 for
spring, summer, autumn and winter, respectively. These
findings indicate a dominance of anthropogenic n-alkanes
from automobile exhaust and coal combustion for heating
(Kalaitzoglou et al., 2004).

The wax results (Table 1) indicate that the mean contri-
butions of biogenic wax n-alkanes were 25.9, 39.9, 34.8,

Table 1 Total concentration ranges and molecular diagnostic parameters of n-alkane, PAHs, and fatty acids in PM2.5 and PM10 particles

Spring Summer Autumn Winter
PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10∑

n-Alkane (ng/m3) 851.7 1072.3 543.9 703.0 631.8 971.0 1299.7 1734.7
Cmax 25 27 25 25 27 29 23 25
CPIa 1.28 1.43 1.25 1.11 1.25 1.32 1.04 1.14
%Waxb 20.3 25.9 29.3 39.9 28.3 34.8 16.0 21.2∑

PAHs (ng/m3) 52.7 73.5 30.3 45.0 50.1 66.1 278.6 315.2∑
Fatty acids (ng/m3) 431.7 625.1 194.4 199.9 207.8 263.0 463.6 659.8

Oleic acid/stearic acid 0.16 0.15 0.11 0.11 0.26 0.26 0.32 0.33∑
Water soluble ions (µg/m3) 35.4 59.3 52.9 82.4 49.1 74.2 64.1 87.8

SO4
2− (µg/m3) 10.8 16.4 12.6 16.3 18.2 22.0 43.7 48.8

NO3
− (µg/m3) 4.8 6.4 5.3 8.4 8.7 12.5 5.3 8.5

NH4
+ (µg/m3) 11.7 15.9 21.4 30.5 9.6 12.8 7.4 8.6

a CPI: carbon preference index, alkane: CPI =
∑

(odd carbon number alkanes)∑
(even carbon number alkanes)

b %Wax: percentage of leaf wax-organic compounds in the total fraction of organic compounds,
%wax: Cn =

∑
(Cn − 0.5(Cn−1 +Cn+1))/

∑
Cn−alkanes × 100%. Negative values of Cn were taken as zero (Bi et al., 2005).
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Fig. 1 Typical seasonal distribution diagrams of n-alkanes in different size particles.

and 21.2 in PM10 and 20.3, 29.3, 28.3, and 16.0 in PM2.5
for spring, summer, autumn and winter, respectively. Plants
flourish in the summer and autumn seasons, and when
winter arrives, almost of the plants are brown and with-
ered. The n-alkane contributions from biogenic sources
were relatively smaller in the winter than in the summer
and autumn. These results also indicate the significant
contribution of fossil fuel combustion in the winter to air
pollution in Beijing.

2.2 PAHs

A total of 16 PAHs were quantified including naphthalene
(NA); acenaphthylene (ACY); acenaphthene (ACE);
fluorene (FL); phenanthrene (PHEN); anthracene (AN);
fluoranthene (FlUR); pyrene (PY); benzo[a]anthracene
(BaA); chrysene (ChRY); benzo[b] fluoranthene (BbF);
benzo[k]fluoranthene (BkF); benzo[a]pyrene (BaP);
indeno[1,2,3-cd]pyrene (IcdP); dibenzo[a,h]anthracene
(dBAn); and benzo[ghi]perylene (Bpe), with total
concentrations of 22.4–1014.3 ng/m3 in PM10 and 9.2–
923.2 ng/m3 in PM2.5 (Fig. 2). These PAHs were mainly
enriched in the PM2.5 samples (about 83%). Compared
with other cities, the total concentrations of PAHs in this
study were higher than those in Hong Kong (Bi et al.,

2005; Guo et al., 2003a), Houston (Fraser et al., 2002),
Rome (Menichini et al., 1999), Nanjing (Wang et al.,
2006), and Qingdao (Guo et al., 2003b), but were lower
than those in Tianjin (Wu et al., 2005) and New Delhi
(Sharma et al., 2007), indicating that the air pollution
from PAHs in Beijing is very high. Similar to the alkanes,
a clear seasonal pattern was found for PAHs, with much
higher concentrations in the winter, followed by the
autumn and spring seasons; the lowest concentrations
were found in the summer. These results were consistent
with those reported by other authors (Guo et al., 2003b;
Pietrogrande et al., 2011; Pindado et al., 2009). The
percentage of individual ring PAHs differed between the
PM10 and PM2.5 samples. For example, in the spring, the
main components had 5 rings in PM10, while in PM2.5;
they had 4 rings. Components having four or more fused
aromatic rings contributed most strongly to the total
concentrations of PAHs (above 87%).

In general, most PAHs are of anthropogenic origin,
and there are two main sources of PAHs: mobile (ve-
hicular) and stationary (residential heating and power
plants) (Zheng et al., 2000). The molecular composition
profiles and characteristic ratios of PAHs have been used
to distinguish among different sources (Guo et al., 2003a;
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Fig. 2 Seasonal average concentrations of 16 PAHs in atmospheric aerosols in Beijing.
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Ladji et al., 2009b). The characteristic ratios of individual
PAHs from earlier studies and the average ratios of these
individual PAHs in the aerosols collected in Beijing are
listed in Table 2. The average ratios of AN/(AN+PHEN)
for all seasons were above 0.1, indicating that burning of
fossil fuels was the major source of PAHs in Beijing. The
average ratios of BaP/Bpe were close to those for coal
combustion emissions in the autumn and winter, indicating
that the discharge gas of coal combustion had seriously
polluted the atmosphere in Beijing, while in the summer,
the average ratios were close to those for gasoline or diesel
combustion. The ratios of BaA/ChRY indicated that the
combustion of biomass or coal might be a primary source
of PAHs. Ratios of FLUR/(PY+FLUR) that are close to
0.4, 0.6–0.7, and > 0.7 are characteristic of petroleum,
exhaust emission, and combustion of grass, wood or coal,
respectively (Yunker et al., 2002). In this study, the ratios
of FLUR/(PY+FL) were in the range of 0.52–0.56 (mean:
0.55), indicating that with the rapid increase in the numbers
of private cars, the level of exhaust emissions has increased
dramatically in Beijing. Through the above analysis, we
concluded that the primary source of PAHs in aerosols was
coal combustion, followed by gasoline combustion.

2.3 Fatty acids

A total of 25 individual fatty acids (C10–C31) were iden-
tified and quantified in the PM2.5 and PM10 samples of
Beijing, including three unsaturated fatty acids (oleic acid
(C18:1), linoleic acid (C18:2) and eleostearic acid (C18:3)
(Fig. 3). The major compound classes included fatty acids,
with total concentrations of 45.5–992.1 ng/m3 for PM2.5,
and 61.7–1652.3 ng/m3 for PM10. Figure 3 indicates that
fatty acids were mostly enriched in PM2.5, especially in the
summer (90%). Palmitic acid (C16) was the most abundant
acid, followed by stearic acid (C18). A predominance of
acids with even-numbered carbons of less than 20 carbons
was found, which is considered to be derived in part
from microbial activities and cooking meat (Oliveira et al.,
2007; Rogge et al., 1991; Simoneit, 1986), while homologs
> 22 carbons come from vascular plant wax (Feng et
al., 2006; Simoneit and Mazurek, 1982). In addition to
saturated fatty acids, three unsaturated fatty acids, oleic
acid (C18:1), linoleic acid (C18:2), and eleostearic acid
(C18:3), were also abundant in Beijing aerosol samples.
Linoleic acid and oleic acid are unstable and can be rapid-
ly degraded in the atmosphere (Kawamura and Kaplan,
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Fig. 3 Average concentrations of individual fatty acids in PM10 and PM2.5.

Table 2 Value of molecular diagnostic ratios of PAHs for source identification

An/(An+PHEN) BaP/Bpe BaA/ChRY FLUY/(FL+PYR)

PM2.5 Spring 0.15 0.91 0.43 0.54
Summer 0.25 0.30 0.97 0.56
Autumn 0.41 0.80 1.24 0.56
Winter 0.18 1.23 1.27 0.54

PM10 Spring 0.31 0.62 1.12 0.56
Summer 0.28 0.64 1.08 0.56
Autumn 0.38 0.82 1.38 0.54
Winter 0.19 0.75 1.73 0.52

Coal combustion – 0.7–6.6 1.0–1.2 –
Petroleum pollution < 0.1 – – 0.4
Gasoline combustion 0.3–0.4 0.28–1.2 0.6–0.7
Diesel combustion > 0.1 0.46–0.81 0.17–0.36
Biomass burning – 0.93 > 0.7
Dust – – –

–: No practical importance.
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1987). Thus, the oleic acid to stearic acid ratio is often
used as an indicator of aerosol aging. In PM10 samples, the
average ratios were 0.16, 0.11, 0.26, and 0.32, and in PM2.5
samples, the average ratios were 0.15, 0.11, 0.26, and 0.33
in the spring, summer, autumn, and winter, respectively.
The ratio of C18:0/C16 has been used as a qualitative tool
for source assessment (Ladji et al., 2009a; Oliveira et al.,
2007; Zhao et al., 2006). Ratios lower than 0.25, 0.25–

0.5, and 0.5–1.0 can be attributed to foliar vegetation
combustion and wood smoke, car and diesel truck exhaust,
and paved and unpaved road dust and charbroiling, respec-
tively (Rogge et al., 2006). In this study, the ratios were
0.38, 0.29, 0.37, and 0.39 for PM10 and 0.36, 0.28, 0.33,
and 0.42 for PM2.5 in the spring, summer, autumn and
winter, respectively, indicating the strong contribution of
vehicle emissions to the concentrations of fatty acids in
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Fig. 4 Average concentrations of individual water soluble ion in PM10 and PM2.5.

Table 3 Factors analysis of main n-alkanes and PAHs

Compound Factor 1 Factor 2 Compound Factor 1 Factor 2
PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10

C17 0.641 0.517 FL 0.635 0.496 0.917
C18 0.828 0.749 PHEN 0.838 0.665 0.333 0.677
C19 0.929 0.912 AN 0.367 0.669 0.909
C20 0.916 0.945 FLUR 0.924 0.834 0.507
C21 0.912 0.990 PY 0.933 0.836 0.507
C22 0.427 0.519 0.859 0.950 BaA 0.908 0.883 0.338 0.440
C23 0.482 0.640 0.820 0.907 ChRY 0.963 0.895 0.413
C24 0.537 0.887 0.770 BbF + BkF 0.916 0.906 0.344
C25 0.648 0.918 0.692 BaP 0.674 0.887 0.768 0.448
C26 0.811 0.963 0.470 dBAn 0.707 0.639 0.476
C27 0.885 0.974 0.414 IcdP 0.873 0.716 0.625 –0.349
C28 0.904 0.948 Bpe 0.903 0.891 0.351
C29 0.912 0.928
C30 0.956 0.892
C31 0.932 0.732
C32 0.929 0.601
Eigen value 7.0 7.7 6.7 6.4 8.8 8.7 0.963 1.56
Variance (%) 68.8 52.3 18.1 29.6 59.3 73.2 22.1 13.0
Cumulative (%) 43.8 48.0 42.0 43.8 59.3 56.9 21.1 20.0
Possible sources Biogenic source Fossil fuel combustion Vehicular emission Coal combustion
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atmospheric particles.

2.4 Water-soluble inorganic ions

In this study, nine major water-soluble inorganic ions were
quantified (Na+, NH4

+, K+, Mg2+, Ca2+, Cl−, NO2
−, NO−3 ,

SO4
2−), the result for the main ions is listed in Fig. 4 . The

secondary inorganic ions of SO4
2− , NO3

−, and NH4
+ were

the major components of water soluble ions, accounting for
78% and 63% of the total water soluble ions in PM2.5 and
in PM10, and the average concentrations of SO4

2−, NO3
−,

and NH4
+ were (21.3 ± 15.2), (6.1 ± 1.8), (12.5 ± 6.1)

µg/m3 in PM2.5, and (25.8 ± 15.5), (8.9 ± 2.6), (16.9 ± 9.5)
µg/m3 in PM10, respectively. The highest concentration
of SO4

2− was found in winter. The increased use of fuel
coal for heating was one of the important reasons for the
enhanced SO4

2− concentration during this period. Nitrate
in autumn was higher than that in the other seasons. The
NH4

+ concentration was highest in summer. We calculated
linear regression correlations between different chemical
species in PM2.5 and PM10. In this study, NH4

+-NO3
−

concentrations presented a strong correlation not only in
PM2.5 ([NO3

−] = 0.43[NH4
+] +1.82, R2 = 0.83) but also in

PM10 ([NO3
−] = 0.41[NH4

+] + 0.001, R2 = 0.73). NH4
+

and SO4
2− concentrations showed a weak correlation both

in PM2.5 (R2 = 0.50, slope = 1.64) and in PM10 (R2

= 0.39, slope = 0.39), suggesting that these three major
ions primarily existed as ammonium sulfate ((NH4)2SO4),
ammonium bisulfate (NH4HSO4) and ammonium nitrate
(NH4NO3).

2.5 Source apportionment by principal component
analysis

Source apportionment for PM2.5 and PM10 constituents
were identified by means of Principal Component Factor
Analysis (PCA). PCA was executed by the varimax rotated
factor matrix method, based on the orthogonal rotation
criterion which maximizes the variance of the squared
elements in the column of a factor matrix, using statistical
software (SPSS v19). Factor loadings indicate the corre-
lation of each pollutant species with each component and
were related to the source emission composition (Almeida
et al., 2006). To examine the suitability of these data for
factor analysis, Kaiser-Meyer-Olkin (KMO) and Bartlett’s
tests were performed. KMO is a measure of sampling
adequacy that indicates the proportion of variance which
is common variance. A high value (close to 1) generally
indicates that factor analysis may be useful. If the KMO
test value is less than 0.5, factor analysis will not be
useful (Parinet et al., 2004). In this study, KMO < 0.5
for water-soluble ions and fatty acids, indicating that there
are significant relationships among variables. The factor
analysis results of alkanes and PAHs in coarse and fine par-
ticulates in Beijing are presented in Table 3. Two factors
were sufficient to explain most of the data variance. For
alkanes, factor 1, which explained 43.8% and 42.0% of the

total variance with Eigen Value of 7.0 and 6.7 for fine and
coarse particulate respectively, represented emissions from
biogenic sources such as vegetative detritus and cooking,
with strong loadings for carbon numbers C17−27. Factor
2 explained 48.0% and 43.0% of the total variance, with
Eigen Value of 7.7 and 6.4 for fine and coarse particulates,
and respectively represented emissions from combustion
sources such as fossil fuel emissions and biomass burning,
with strong loadings for carbon numbers C28−32.

For PAHs, factor 1 was responsible for 59.3% and 73.2%
of the total variance, with Eigen Value of 8.8 and 8.7 for
fine and coarse particulates respectively. This factor was
associated with vehicular emission, with strong loading of
PHEN, FLUR, PY, BaA, ChRY, BbF, BkF, dBAn, IcdP,
and Bpe. The secondary factor, which explained 21.1% and
20.0% of the total variance for fine and coarse particulates
with high loading of FL, AN, BaP and IcdP, represented
coal combustion.

3 Conclusions

Samples of PM2.5 and PM10 aerosols were analyzed to
study the compositions of solvent-extractable organic com-
pounds, including n-alkanes, PAHs, and organic acids and
water-soluble ions from September 2006 to August 2007.
The total concentrations of n-alkanes and PAHs showed
strong seasonal variation trends, with higher concentra-
tions in the winter than in other seasons, and higher
concentrations were found in winter or autumn. Fatty acid
concentrations had weak seasonal variation trends. These
organic compounds were mainly enriched in PM2.5 sam-
ples. Source identification analyses indicated that the most
significant source of n-alkanes was fossil fuel combustion,
and the most significant source of PAHs in aerosols was
coal combustion, followed by gasoline combustion. The
main source of fatty acids was vehicle emissions. The
major alkane sources were biogenic sources and fossil
fuel combustion, as identified through PCA analysis. The
major sources of PAHs were vehicular emission and coal
combustion.
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