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Abstract

This work investigated the formation of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) upon chlorination
of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional
treatment processes, i.e., coagulation, sedimentation, and filtration were employed. Twenty DBPs, including four trihalomethanes, nine
haloacetic acids, seven N-DBPs (dichloroacetamide, trichloroacetamide, dichloroacetonitrile, trichloroacetonitrile, bromochloroace-
tonitrile, dibromoacetonitrile and trichloronitromethane), and eight volatile chlorinated compounds (dichloromethane (DCM),
1,2-dichloroethane, tetrachloroethylene, chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-
trichlorobenzene) were detected in the two WTPs. The concentrations of these contaminants were all below their corresponding
maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for
DCM (17.1 pg/L detected vs. 20 ug/L MCL). The SWTP had much higher concentrations of DBPs detected in the treated water as well
as the DBP formation potentials tested in the filtered water than the GWTP, probably because more precursors (e.g., dissolved organic
carbon, dissolved organic nitrogen) were present in the water source of the SWTP.

Key words: carbonaceous disinfection by-products; nitrogenous disinfection by-products; formation potential; free chlorine; water

treatment plant
DOI: 10.1016/S1001-0742(11)61006-1

Introduction

Drinking water disinfection (esp. chlorination) results in
the formation of disinfection by-products (DBPs) which
may cause adverse health effects on human beings. DBPs
are mainly formed in the reactions between their precur-
sors present in source water and the disinfectant (esp.
chlorine) added during water treatment. Over the past three
decades, much more DBP studies have focused on the
currently regulated carbonaceous DBPs (C-DBPs) (e.g.,
trihalomethanes (THMs) and haloacetic acids (HAASs))
(Bellar et al., 1974; Krasner et al., 2006), creating a
better understanding of the formation and control of THMs
and HAAs in water treatment plants (WTPs) than those
of emerging unregulated DBPs, e.g., nitrogenous DBPs
(N-DBPs) (Muellner et al., 2007). The concentrations
of N-DBPs, including haloacetonitriles (HANs), haloni-
tromethanes (HNMSs), and haloacetamides (HAcAms), are
generally at a lower level (ng/L to png/L) than those of C-
DBPs (Krasner et al., 2006; Chu et al., 2011a), but are more
toxic (Plewa et al., 2004, 2008; Muellner et al., 2007).
The levels of DBPs and their precursors in WTPs

* Corresponding author. E-mail: hou_yukun@126.com (Yukun Hou);
1world1water @tongji.edu.cn (Wenhai Chu)

provide basic information for health risk assessment, regu-
lation and water treatment process optimization. Since the
1980s, the surveys for DBPs in the treated water of WTPs
have been carried out in many countries. Halogenated
N-DBPs were detected in some WTPs of the United States,
such as HANs, HNMs and HAcAms (Krasner et al.,
1989, 2006, 2007a; McGuire et al., 2002; Mitch et al.,
2009). Similar surveys were also carried out in Canada
(Williams et al., 1995), Australia (Simpson and Hayes,
1998) and Scotland (Goslan et al., 2009). However, these
studies mainly focused on HANSs, and much less data were
reported on HAcAms and HNMs.

Toxicological studies have reported that N-DBPs (e.g.,
HAcAms and HNMs) show much higher cytotoxicity
and genotoxicity than the regulated THMs and HAAs to
mammalian cells (Plewa et al., 2004, 2008). Investigating
the formation of N-DBPs in WTPs is therefore an urgent
task. Chu et al. (2011b) reported the formation of N-DBPs,
including HANs, HNMs and HAcAms, in a typical surface

water treatment plant (SWTP) located in pouthermChima:
However, the surface water quality varies|significantly in
different regions of China due to significantly different
climatic and geographical characteristic§. Zhang et al.
(2011) investigated the formation potentiall of 4 THMs and
7 HAAs in 13 source water samples collected from the



http://www.jesc.ac.cn

No. 7

Carbonaceous and nitrogenous disinfection by-products formation in the surface and ground water treatment plants.----- 1205

northeast to south China covering four of the seven major
water basin areas (Songhua River Basin, Hai River Basin,
Yangtze River Basin and Huai River Basin). It was found
that the organic compounds in different source waters
exhibited different reactivities with chlorine, which prob-
ably caused the different characterization for the formation
of N-DBPs. However, comprehensive information on the
formation of C-DBPs and N-DBPs from source water in
Yellow River Basin (e.g., Zhenzhou City) is little known.
The Yellow River, with a total length of 5464 km, is the
second longest river in China. With artificial pollution
(e.g., factory discharges and sewage from fast-expanding
cities), the Yellow River is being polluted, which brings
great challenges to WTPs along Yellow River. The conven-
tional treatment process could not effectively remove DBP
precursors, probably causing the extensive formation of
DBPs in drinking water, including C-DBPs and N-DBPs,
threatening people’s health.

The aim of this study was to evaluate the concen-
trations of DBPs and the removal efficiency of the
precursors (denoted by the DBP formation potentials
(FPs)) in two typical WTPs located in Zhengzhou
City that use the surface and ground waters from the
Yellow River as source water, respectively. For N-
DBPs, two HAcAms (dichloroacetamide (DCAcAm) and
trichloroacetamide (TCAcAm)), four HANs (dichloroace-
tonitrile (DCAN), trichloroacetonitrile (TCAN), bro-
mochloroacetonitrile (BCAN) and dibromoacetonitrile
(DBAN)) and one HNM (trichloronitromethane (TCNM))
were determined. For C-DBPs, four regulated THMs
(chloroform (CF), bromodichloromethane (BDCM), di-
bromochloromethane (DBCM) and bromoform (BF)),
nine HAAs (chloroacetic acid (CAA), dichloroacetic
acid (DCAA), trichloroacetic acid (TCAA), bromoacetic
acid (BAA), bromochloroacetic acid (BCAA), bro-
modichloroacetic acid (BDCAA), dibromoacetic acid
(DBAA), dibromochloroacetic acid (DBCAA), tribro-
moacetic acid (TBAA)), and some other volatile chlorinat-
ed compounds (e.g., dichloromethane (DCM)) were also
measured. It is expected that the survey data would be
helpful for DBPs health risk assessment, regulation and
water treatment process optimization.

1 Materials and methods

1.1 Chemicals

The standard solutions of the studied DBPs were pur-
chased from Sigma-Aldrich (USA), except DCAcAm
(98.5%) and TCAcAm (99%) which were supplied from
Alfa Aesar (Karlsruhe, Germany). Ethyl acetate, obtained
from Fisher Scientific (Waltham, USA), was used to ex-
tract DCAcAm and TCAcAm. All other chemicals and
reagents were supplied by Sinopharm Chemical Reagent
(Shanghai, China) with at least analytical grade purity.

1.2 Sample collection and preparation

Water samples were collected from a SWTP and a ground
water treatment plant (GWTP) located in Zhengzhou

City, China, in November 2011. The treatment processes
adopted in the SWTP included coagulation (34 mg/L
polyaluminium chloride), sedimentation, filtration, and
chlorination (3.1 mg/L chlorine), which are prevalent in
Chinese WTPs. In contrast, only two treatment process-
es (i.e., filtration and chlorination) were adopted in the
GWTP where about 0.95 mg/L free chlorine was dosed as
disinfectant. Although the two plants both use the Yellow
River as their water source, the source water of the GWTP
(bank-infiltration groundwater) had much better quality
than that of the SWTP (surface water). Once collected, the
water samples were immediately quenched of disinfectant
residuals through addition of about 10 mg/L ascorbic acid.
Glacial acetic acid was added to lower the sample pH
to 4.8-5.5 for HAN analysis. With regards to HAcAm
analysis, the sample pH was adjusted to 5.0 + 0.2 with
glacial acetic acid to inhibit the potential hydrolysis of
HAcAms under neutral or basic conditions (Chu et al.,
2012). Subsequently, the samples were filtered through a
pre-rinsed 0.7-um glass filter membrane (Whatman, UK),
and then stored in the refrigerator at 4°C until used. The
water quality parameters of influent, and before and after
filtration in the two WTPs are compared in Table 1.

1.3 Analysis

The sample pH was measured onsite using a solid selective
electrode connected to a multimeter (WTW3410, Ger-
man). Turbidity was also measured onsite by a turbidimeter
(HACH 2100N, USA). Dissolved organic carbon (DOC)
and total dissolved nitrogen (TDN) were analyzed by a
TOC analyzer coupled with a total nitrogen measurement
unit (TOC-VCPH, Shimadzu, Japan). The DON concen-
tration was calculated as the difference between TDN
and dissolved inorganic nitrogen (DIN). DIN including
ammonia, nitrate, and nitrite, and free and total chlorine
were measured with a portable spectrophotometer (HACH
DR2800, USA). UV;s4 was measured by a UV/Vis double
beam spectrophotometer (Unico4802, USA). The specific
UV (SUVA) is the UV absorbance at the 254 nm wave-
length divided by the DOC of a water sample, which
normalizes the aromatic-biased UV,s4 measurement over
the overall organic load in the water according to the US
EPA method 415.3. SUVA is a good surrogate for aromatic
organics (Edzwald and Tobiason, 1999).

THMs, HANs (DCAN, TCAN, BCAN and DBAN),
HNM (TCNM) and some other volatile chlorinated DBPs
(e.g., DCM) were all analyzed with a purge & trap
sample concentrator (eclipse4660, OI, USA) and gas
chromatograph/mass spectrometry (GC/MS) (QP2010,
Shimadzu, Japan) according to US EPA method 524.2.
Nine HAAs were analyzed by a GC (Shimadzu-QP2010,
Japan) coupled with an electron capture detector according
to US EPA method 552.2. Two HAcAms were analyzed
by liquid-liquid extraction and GC/MS detection (Chu

et al., 2010). The DBP FP test was ¢onducted with
free chlorine following the method of [Krasner et al.
(2007b). The method detection limits (ynit pg/L) were
as follows: 0.067 (CF), 0.071 (BDCM), §.087 (DBCM),
0.085 (BF), 0.11 (DCAN), 0.091 (TCAN}), 0.15 (BCAN,
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Table 1 Water quality parameters of influent before and after filtration in the studied SWTP and GWTP
Parameters SWTP GWTP
Raw water Before filtration After filtration Raw water Before filtration After filtration
Turbidity (NTU) 30.2 1.76 0.14 3.29 0.11 0.12
pH 8.22 8.12 7.98 7.60 7.69 7.64
UVys4 (cm™ 1) 0.035 0.005 0.004 0.005 0.001 0.001
NH4*-N (mg/L) 0.27 <0.02 <0.02 0.20 <0.02 <0.02
NO3~-N (mg/L) 2.30 2.81 2.84 0.08 0.16 0.15
NO;,™-N (mg/L) 0.018 < 0.001 < 0.001 0.001 < 0.001 < 0.001
DOC (mg/L) 15.6 3.28 2.67 1.76 0.55 0.42
DON (mg/L) 1.00 0.93 0.84 0.19 0.17 0.15
SUVA (L/(mg-m)) 2.24 1.52 1.50 2.84 1.81 2.38

DOC: dissolved organic carbon; DON: dissolved organic nitrogen; SUVA: specific UV.

TCNM), 0.26 (DBAN), 0.10 (DCAcAm, TCAcAm),
0.70 (CAA, TBAA), 0.50 (DCAA, TCAA, BAA, BCAA,
BDCAA, DBAA, DBCAA), and < 0.10 for eight volatile
chlorinated compounds (DCM, 1,2-dichloroethane,
tetrachloroethylene, chlorobenzene, 1,2-dichlorobenzene,
1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-
trichlorobenzene).

2 Results and discussion

2.1 Formation of THMs

Four THMs (i.e., CF, BDCM, DBCM and BF) have
recently been listed in the National Standards for Drinking
Water Quality of China (GB5749-2006), with maximum
contamination levels (MCLs) at 60, 100, 60, and 100
ug/L, respectively. Figure 1a shows that the concentrations
of the above four THMs and total THM (TTHM) in
the finished water of the SWTP were all much higher
than those of the GWTP. This can be mainly ascribed to
the better source water quality of the GWTP than that
of the SWTP. For example, the concentrations of DOC
(representing the primary precursors of C-DBPs) were
15.6 and 1.76 mg/L in the raw water of the SWTP and
GWTP, respectively (Table 1). Similarly, it was found the
THM FPs (representing the precursor levels) in the filtered
water (right before chlorination) of the SWTP were also
substantially higher than those in the GWTP (Fig. 1b),

80
OSWTP a

= Or mgwre ™
3
5 60}
8
s
g 50F -
=
-
£ 400
g
& 30-
i
5 200
=
o
O

10}

. ND
0 1 1 1 1
CF  BDCM DBCM  BF TTHM

FPs in filtrated water (ug/L)

which is in agreement with the previous inference. As
indicated in Fig. 1b, the concentrations of four THMs in
the finished water of both the SWTP and GWTP were
lower than their MCLs. However, it should be pointed out
that the concentrations of CF and TTHM of the SWTP
might exceed their MCLs during the long time delivery of
water in the pipelines, as cautioned by their FPs in Fig. 1b.

2.2 Formation of HAAs

The concentrations of nine HAAs in the finished water
of the SWTP and GWTP are shown in Fig. 2a. The
results indicated that BAA, DBAA, DBCAA, and TBAA
were undetectable in the finished water of the SWTP
and GWTP, and CAA (0.85 pg/L) was only detected in
the SWTP. Similar to THMs, the concentrations of all
detected HAA were significantly higher in the SWTP than
those in the GWTP. In addition, Fig. 2b shows that the
SWTP had notably higher HAA FPs than the GWTP. The
MCLs of DCAA and TCAA were regulated as 50 and
100 ng/L, respectively, which were both higher than their
concentrations detected in the finished water of the two
WTPs (Fig. 1a). It is noted that the concentration of THAA
might exceed its MCL during the long time delivery of
water in the pipelines, as cautioned by its FP in Fig. 2b.

2.3 Formation of N-DBPs

Figure 3 shows the concentrations of N-DBPs in the
finished water and their FPs in the filtered water of the
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Fig. 1 Four THMs (CF, BDCM, DBCM, BF) and total THM concentrations in the finished water (a) and THM formation potentials|(FPs) in the filtéred

water (b) of the SWTP and GWTP. Error bars represent the standard deviation of triplicate measurements. ND: not detected.
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standard deviation of triplicate measurements.

SWTP and GWTP. DCAN, BCAN, TCNM and DCAcAm
were all detected in the finished water of the SWTP at a
concentration level of 0.3-2.5 ug/L, whereas only DCAN
and DCAcAm were detected in the GWTP at a notably
decreased concentration level of 0.2-0.5 pg/L. Addition-
ally, the N-DBP FPs in the finished water of the SWTP
were also higher than those of the GWTP, which was in
accordance with the results of C-DBPs such as THMs
(Fig. 1) and HAAs (Fig. 2). The previous observations
imply that a portion of the DON plays an essential role in
the formation of DCAcAm and DCAN, where that portion
is probably watershed-specific, and the presence of DON
may act as an indicator (but not predictor per se) of N-DBP
FP (Chu et al., 2010). The concentration of DON, which is
believed to be the main precursor of N-DBPs (Lee et al.,
2007), was much higher in the source water of the SWTP
(i.e., 1.00 pg/L) than that of the GWTP (i.e., 0.19 pg/L).
This mainly accounted for the significant difference in the
N-DBP concentrations of the two WTPs. A low SUVA
value means that the organic matter in water is mostly
comprised of non-humics, and has low hydrophobicity and
low molecular weights, usually resulting in poor removal
of organics (Edzwald and Tobiason, 1999; Roe et al.,
2008). The lower SUVA values in the finished water of
the SWTP may, to some extent, also explain the higher

concentrations and FPs of N-DBPs in the SWTP.
2.4 Formation of volatile chlorinated compounds

The concentrations of eight chlorinated volatile
compounds in the finished water of the two WTPs
are shown in Fig. 4. DCM, 1,2-dichloroethane,

18[
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Fig.4 Chlorinated volatile DBP concentrations ir] the finished water
of the SWTP and GWTP. Error bars represent |the standard devi-
ation of triplicate measurements. 1: DOM; 2:1,2tdichloroethane; 3;
tetrachloroethylene; 4: chlorobenzene; 5: 1,2-dichl¢robenzene; 6: 1,4~
dichlorobenzene; 7: 1,2,3-trichlorobenzene; 8: 1,2,4-frichlorobenzene.
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tetrachloroethylene, chlorobenzene, 1,2-dichlorobenzene,
1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-
trichlorobenzene, were all detected in the finished water
of the SWTP, whereas only DCM and 1,2-dichloroethane
were detected in the finished water of the GWTP.
These volatile compounds were undetectable in the
filtered water of both the SWTP and GWTP before
disinfection, which preliminarily indicated that DCM, 1,2-
dichloroethane, tetrachloroethylene, chlorobenzene,
1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-
trichlorobenzene and  1,2,4-trichlorobenzene  were
probably formed during chlorination disinfection.
Therefore, to better control the concentration of these
eight volatile compounds to meet their corresponding
MCLs, WTPs should pay more attention to disinfection
processes. In the study, with the exception of DCM, the
concentrations of the other seven chlorinated volatile
compounds were much lower than their corresponding
MCLs, i.e., 20, 30, 40, 300, 1000, 300 and 20 pg/L for
1,2-dichloroethane, tetrachloroethylene, chlorobenzene,
1,2-dichlorobenzene, 1,4-dichlorobenzene, and the sum
of 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene,
respectively. It is noted that the concentration of DCM
(17.1 pg/L) in the finished water of the SWTP was close
to its MCL (20 pg/L). Thus, it is necessary to strengthen
the long-term monitoring of DCM in the finished water,
and also optimize the treatment processes to reduce its
formation.

2.5 Formation of brominated DBPs

The formation of brominated DBPs has attracted more
attention because they are generally more toxic than their
chlorinated analogues (WHO, 2000). The bromine incor-
poration factor (BIF) is used as an index to describe the
proportion of the DBPs that can be partially or totally
brominated. The BIFs for THMs, tri-HAAs (THAASs), di-
HAAs (DHAAs), and di-HANs (DHANS) are defined by
the following equations:
[BDCM] + 2[DBCM] + 3[BF]

BIF(THMs) = 1)
[CF] + [BDCM] + [DBCM] + [BF]

[BDCAA] + 2[DBCAA] + 3[TBAA]
BIF(THAASs) = (2)
[TCAA] + [BDCAA] + [DBCAA] + [TBAA]
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Fig. 5 Raw (a) and normalized (b) bromine incorporation factor (BIFs) of THMs, THAAs, DHAAs and DHANE.

B [BCAA] + 2[DBAA]
BIF(DHAAS) = 5 A AT 1 [BCAA] + [DBAA] ©)

BIF(DHANS) = [BCAN] + 2[DBAN] @
[DCAN] + [BCAN] + [DBAN]

As shown in the above Eqs. (1)—(4), the BIF values
describe the molar contribution of the brominated THMs,
THAAs, DHAAs and DHANS. Depending on the degree of
bromine substitution, BIF can range from 0 (no brominated
species) to 3 (pure BF and pure TBAA) for THMs and
THAAs, and 2 (pure DBAA and DBAN) for DHAAs and
DHAN:S. Figure 5a shows that the calculated BIF values of
the selected DBPs were mainly below 0.3, indicating that
CF, DCAA, TCAA and DCAN were the dominant species
in THMs, DHAAs, THAAs and DHANSs, respectively.
If one divides BIF by the number of halogens (i.e., 3
in THMs and THAAs; 2 in DHAAs and DHANS), the
normalized BIF will range from O to 1. The normalized
BIFs for THMs, THAAs, DHAAs and DHANS are shown
in Fig. 5b. For the SWTP, more brominated DHAAs and
DHANSs were formed than brominated THMs and THAAs.
It was also reported that more bromine was incorporated
into DHANS than into THMs in the post-chlorinated and
post-chloraminated waters in some previous studies (Chu
etal., 2011b; Obolensky and Singer, 2005). For the GWTP,
no brominated DHANSs were detected, and the normalized
BIF of the DHAAs was also higher than those of the
THMs and THAAs. Therefore, bromine appeared to be
more readily incorporated into dihalogenated, rather than
trihalogenated, DBPs in the studied WTPs.

3 Conclusions

The raw water quality plays a crucial role in the forma-
tion of DBPs during chlorination after the conventional
water treatment processes (i.e., coagulation, sedimentation
and filtration). During the sampling period, the concen-
trations of 4 THMs (CF, BDCM, DBCM, and BF), 9
HAAs (CAA, DCAA, TCAA, BAA, BCAA, BDCAA,
DBAA, DBCAA, and TBAA) and some other regulat-
ed volatile chlorinated compounds (1,2-dichloroethane,
tetrachloroethylene, chlorobenzene, 1,2-dichlorobenzene,
1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-
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trichlorobenzene) were all significantly lower than their
MCLs. However, some N-DBPs were detected, a few of
which had higher concentrations in the studied SWTP
than what was reported in some previous studies. The
concentration of DCM was found to approach its MCL,
which necessitates the long-term monitoring of this com-
pound. In addition, this study seriously cautions that the
concentrations of CF, TTHM and THAA in SWTP might
exceed their MCLs during the long time delivery of water
in the pipelines, as indicated by their FP data. Further
study on the risk assessment and long-term monitoring
of C-DBPs, N-DBPs and volatile chlorinated compounds
should be carried out in China, especially in source water
with high precusor loadings.
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