首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Air sparging is an innovative methodology for remediating organic compounds present in contaminated, saturated soil zones. In the application of the technology, sparging (injection) wells are used to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below or within the areas of contamination. Two major mechanisms of remediation are engaged/enhanced due to the sparging process. First, volatile organic compounds are dissolved in the groundwater and sorbed on the soil partition into the advective air phase, effectively simulating an in-situ air stripping system. The stripped contaminants are transported in the air phase to the vadose zone, generally within the radius of influence of a standard vapor extraction and vapor treatment system. Second, with optimal environmental conditions, volatile and semivolatile organic compounds may be biodegraded by utilizing the sparging process to oxygenate the groundwater, thereby enhancing the growth and activity of the indigenous bacterial community. Air sparging is a complex multifluid phase process which has been applied successfully in Europe since the mid-1980s. Major design considerations include site geology, contaminant type, gas injection pressures and flow rates, injection interval (areal and vertical), and site-specific biofeasibility parameters. Site-specific geology and biofeasibility are the dominant design parameters. Pilot testing and full-scale design considerations should also be addressed. Mathematical models have been developed to simulate the air flow field during the sparging process and to examine the limitations imposed by site geology. Correct design and operation of this technology have been demonstrated to achieve groundwater cleanup to low part-per-billion contaminant levels. Incorrect design and operation can introduce significant pollution liability through undesirable contaminant migration in both the dissolved and vapor phases.  相似文献   

2.
The presence of hexavalent chromium, Cr(VI), in soil is an environmental concern due to its effect on human health. The concern arises from the leaching and the seepage of Cr(VI) from soil to groundwater. In this paper, a stabilization technology to prevent this problem was simulated on an artificial soil contaminated with hexavalent chromium. The process is a physico-chemical treatment in which the toxic pollutant is physically entrapped within a solid matrix formed by the pozzolanic reactions of lime and fly ash to reduce its leachability and, therefore, its toxicity. This paper presents the optimum ratio of fly ash and lime in order to stabilize artificial soils contaminated with 0.4 wt.% of Cr (VI) in a brief term process. The degree of chromium released from the soil was evaluated using a modified Toxicity Characteristic Leaching Procedure (TCLP) by US Environmental Protection Agency (EPA). Overall, experimental results showed reduced leachability of total and hexavalent chromium from soils treated with both fly ash and quicklime, and that leachability reduction was more effective with increasing amount of fly ash and quicklime. Stabilization percentages between 97.3% and 99.7% of the initial chromium content were achieved, with Cr(VI) concentration in the TCLP leachates below the US EPA limit for chromium of 5 mg/l. Adequate treatment was obtained after 1 day of curing with just 25% fly ash and 10% quicklime.  相似文献   

3.
In-situ sparging has been accepted as a method to rapidly remediate groundwater at considerably lower costs compared to remedies based on groundwater recovery alone. The success of in-situ sparging depends on effective mass transfer between air and contaminated media in the subsurface. Factors affecting mass transfer include advective airflow, diffusive transport, interphase chemical partitioning, and chemical and biological reaction rates between sparged gases and subsurface contaminants, minerals, and naturally occurring organic compounds. Understanding these factors can increase the design efficiency of in-situ sparging and assist in developing sparging systems that use gases other than air (i.e., oxygen, ozone, and methane).  相似文献   

4.
Air sparging was pilot tested at a site where a groundwater plume containing cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC) and arsenic resulted from landfill operations. In addition to the commonly used methods for estimating air sparging zone of influence (ZOI), in-well temperature was monitored using sensitive thermocouples and data loggers at several monitoring wells of various screened intervals during the test. Following 42 days of pilot testing, the downgradient monitoring well samples were below maximum contaminant levels (MCLs)for all contaminants of concern, VC and dissolved arsenic were below detection limits (0.5 and 10 milligrams per liter [μg/L], respectively) in all of the downgradient monitoring wells. The ZOI monitoring results indicated that at some locations use of mounding data may overestimate the ZOI when the temperature data suggest that no sparged air was entering the well screen. Therefore, monitoring in-well temperature may provide additional useful information for estimating air sparging ZOI and is more indicative of air pathways than other monitoring methods. In addition, the temperature data were valuable for selecting a pulse frequency and duration to optimize groundwater mixing.  相似文献   

5.
A common industrial solvent additive is 1,4‐dioxane. Contamination of dissolved 1,4‐dioxane in groundwater has been found to be recalcitrant to removal by conventional, low‐cost remedial technologies. Only costly labor and energy‐intensive pump‐and‐treat remedial options have been shown to be effective remedies. However, the capital and extended operation and maintenance costs render pump‐and‐treat technologies economically unfeasible at many sites. Furthermore, pump‐and‐treat approaches at remediation sites have frequently been proven over time to merely achieve containment rather than site closure. A major manufacturer in North Carolina was faced with the challenge of cleaning up 1,4‐dioxane and volatile organic compound–impacted soil and groundwater at its site. Significant costs associated with the application of conventional approaches to treating 1,4‐dioxane in groundwater led to an alternative analysis of emerging technologies. As a result of the success of the Accelerated Remediation Technologies, LLC (ART) In‐Well Technology at other sites impacted with recalcitrant compounds such as methyl tertiarybutyl ether, and the demonstrated success of efficient mass removal, an ART pilot test was conducted. The ART Technology combines in situ air stripping, air sparging, soil vapor extraction, enhanced bioremediation/oxidation, and dynamic subsurface groundwater circulation. Monitoring results from the pilot test show that 1,4‐dioxane concentrations were reduced by up to 90 percent in monitoring wells within 90 days. The removal rate of chlorinated compounds from one ART well exceeded the removal achieved by the multipoint soil vapor extraction/air sparging system by more than 80 times. © 2005 Wiley Periodicals, Inc.  相似文献   

6.
Environmental contamination with ionic chromium has been identified as a problem at numerous Superfund and RCRA Corrective Action sites. In many cases, contamination of groundwater to levels above existing standards or criteria may be a potential problem both for direct consumption of groundwater and for transport of mobile forms of chromium to areas such as basements where it can becontacted. In the environment, chromium occurs in two forms: trivalent and hexavalent. The trivalent form is generally immobile and nontoxic; hexavalent chromium is generally mobile and toxic. This article first presents the extent of the chromium problem, reviews the environmental chemistry literature on chromium, and reviews existing treatment technology for chromium immobilization in the nontoxic trivalent state. Finally, we present a case study where immobilization of chromium occurred through natural processes allowing a modified no-action scenario for site remediation.  相似文献   

7.
Subgrade biogeochemical reactors (SBGRs) are an in situ remediation technology shown to be effective in treating contaminant source areas and groundwater hot spots, while being sustainable and economical. This technology has been applied for over a decade to treat chlorinated volatile organic compound source areas where groundwater is shallow (e.g., less than approximately 30 feet below ground surface [ft bgs]). However, this article provides three case studies describing innovative SBGR configurations recently developed and tested that are outside of this norm, which enable use of this technology under more challenging site conditions or for treatment of alternative contaminant classes. The first SBGR case study addresses a site with groundwater deeper than 30 ft bgs and limited space for construction, where an SBGR column configuration reduced the maximum trichloroethene (TCE) groundwater concentration from 9,900 micrograms per liter (μg/L) to <1 μg/L (nondetect) within approximately 15 months. The second SBGR is a recirculating trench configuration that is supporting remediation of a 5.7‐acre TCE plume, which has significant surface footprint constraints due to the presence of endangered species habitat. The third SBGR was constructed with a new amendment mixture and reduced groundwater contaminant concentrations in a petroleum hydrocarbon source area by over 97% within approximately 1 year. Additionally, a summary is provided for new SBGR configurations that are planned for treatment of additional classes of contaminants (e.g., hexavalent chromium, 1,4‐dioxane, dissolved explosives constituents, etc.). A discussion is also provided describing research being conducted to further understand and optimize treatment mechanisms within SBGRs, including a recently developed sampling approach called the aquifer matrix probe.  相似文献   

8.
Groundwater at a Superfund site in west Texas has been found to contain chromium at concentrations exceeding EPA's drinking water standard of .05 mg/l. Alternative treatment methods for this site were investigated; this article presents the evaluation of a physicochemical treatment system, in which removal of total chromium to levels below the drinking water standard was achieved through reduction of hexavalent chromium and subsequent removal by coprecipitation with iron. Costs for the construction of the pilot and full-scale systems are also discussed.  相似文献   

9.
Aspergillus foetidus has the ability to take up chromium during the stationary phase of growth and under growth-nonsupportive conditions. We observed a 97% decrease in hexavalent chromium (initial concentration 5 µg/g) at the end of 92 h of growth, which may be due to its reduction to Cr (III) and/or complexation with organic compounds released due to the metabolic activity of the fungus. Replacement culture studies under growth-nonsupportive conditions revealed that the maximum uptake of Cr (VI) at pH 7.0 is 2 mg/g of dry biomass. At low or high pH values, Cr (VI) uptake is significantly reduced. In addition, the initial rate of total chromium uptake is also enhanced by higher biomass concentrations and the presence of glucose. The results obtained through this investigation indicate the possibility of treating waste effluents containing hexavalent chromium using Aspergillus foetidus.  相似文献   

10.
EOS, or emulsified oil substrate, was used to stimulate anaerobic biodegradation of trichloroethene (TCE) and tetrachloroethene (PCE) at a former Army‐owned manufacturing facility located in the Piedmont area of North Carolina. Previous use of chlorinated solvents at the facility resulted in soil and groundwater impacts. Ten years of active remediation utilizing soil vacuum extraction and air sparging (SVE/AS) were largely ineffective in reducing the TCE/PCE plume. In 2002, the Army authorized preparation of an amended Remedial Action Plan (RAP) to evaluate in situ bioremediation methods to remediate TCE in groundwater. The RAP evaluated eight groundwater remediation technologies and recommended EOS as the preferred bioremediation alternative for the site. Eight wells were drilled within the 100 × 100 feet area believed to be the primary source area for the TCE plume. In a first injection phase, dilute EOS emulsion was injected into half of the wells. Distribution of the carbon substrate through the treatment zone was enhanced by pumping the four wells that were not injected and recirculating the extracted water through the injection wells. The process was repeated in a second phase that reversed the injection/extraction well pairs. Overall, 18,480 pounds of EOS were injected and 163,000 gallons of water were recirculated through the source area. Anaerobic groundwater conditions were observed shortly after injection with a corresponding decrease in both PCE and TCE concentrations. Dissolved oxygen, oxidation‐reduction potential, and sulfate concentrations also decreased after injection, while TCE‐degradation products, ferrous iron, and methane concentrations increased. The reduction in TCE allowed the Army to meet the groundwater remediation goals for the site. Approximately 18 months after injection, eight wells were innoculated with a commercially prepared dechlorinating culture (KB‐1) in an attempt to address lingering cis‐1,2‐dichloroethene (cis‐DCE) and vinyl chloride (VC) that continued to be observed in some wells. Dehalococcoides populations increased slightly post‐bioaugmentation. Both cis‐DCE and VC continue to slowly decrease. © 2007 Wiley Periodicals, Inc.  相似文献   

11.
石油烃污染地下水原位修复技术研究进展   总被引:15,自引:2,他引:15  
王业耀  孟凡生 《化工环保》2005,25(2):117-120
概述了石油烃污染地下水原位修复技术的进展,包括原位化学氧化、原位电动修复、渗透反应格栅、冲洗、土壤气抽出、地下水曝气、生物修复,并对今后的研究发展趋势进行了展望。  相似文献   

12.
In the early 1990s, a soil removal action was completed at a former disposal pit site located in southern Michigan. This action removed waste oil, cutting oil, and chlorinated solvents from the unsaturated zone. To contain groundwater contaminant migration at the site, a groundwater pump‐and‐treat system comprised of two extraction wells operating at a combined flow of 50 gallons per minute, carbon treatment, and a permitted effluent discharge was designed, installed, and operated for over 10 years. Groundwater monitoring for natural attenuation parameters and contaminant attenuation modeling demonstrated natural attenuation of the contaminant plume was adequate to attain site closure. As a result of incomplete contaminant source removal, a rebound of contaminants above the levels established in the remedial action plan (RAP) has occurred in the years following system shutdown and site closure. Groundwater concentrations have raised concerns regarding potential indoor air quality at adjacent residential properties constructed in the past 9 to 10 years. The only remedial option available in the original RAP is to resume groundwater pump‐and‐treat. To remediate the source area, an alternate remediation strategy using an ozone sparge system was developed. The ozone sparge remediation strategy addresses the residual saturated zone contaminants beneath the former disposal pit and reestablishes site closure requirements without resumption of the pump‐and‐treat system. A pilot study was completed successfully; and the final system design was subsequently approved by the Michigan Department of Environmental Quality. The system was installed and began operations in July 2010. As of the January 2011 monitoring event, the system has shown dramatic improvement in site contaminant concentrations. The system will continue to operate until monitoring results indicate that complete treatment has been obtained. The site will have achieved the RAP objectives when the system has been shut down and meets groundwater residential criteria for four consecutive quarters. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Accelerated Remediation Technologies LLC (ART) developed a proprietary (patent‐pending) effective remediation technology that is based on verified and established concepts. The ART technology combines in‐situ air stripping, air sparging, soil vapor extraction, enhanced bioremediation/oxidation, and Dynamic Subsurface CirculationTM in an innovative wellhead system. The system is designed to accommodate a 4‐inch well and is cost‐effective when compared with other remediation technologies. The air‐sparging component results in lifting the water table. This lifting of the water in the well causes a net reduction in head at the well location. Vacuum pressure (the vapor‐extraction component) is applied on top of the well point to extract vapor from the subsurface. The negative pressure from the vacuum extraction results in water suction that creates additional water lifting (mounding). A submersible pump is placed at the bottom of the well to recirculate water to the top for downward discharge through a spray head. The water cascades down the interior of the well similar to what occurs in an air‐stripping tower. Enhanced stripping via air sparging near the bottom of the well occurs simultaneously. In essence, the well acts as a subsurface air‐stripping tower. The pumped‐and‐stripped, highly oxygenated water flows down well annulus and over the “mounded” water back in to the aquifer, which creates a circulation zone around the well to further enhance cleanup. The ART technology has been implemented at several sites nationwide, including industrial laundry facilities, manufacturing plants, and service stations, and has achieved significant reductions in contaminant concentrations. Specifically, a concentration of tetrachloroethene (PCE) decreased from 2,700 to 240 μg/l, in 13 days. In less than three months, the concentrations dropped further to 79 μg/l, which is within the range of background levels. Other sites utilizing the technology have exhibited similar reduction trends in complex subsurface environments. © 2002 Wiley Periodicals, Inc.  相似文献   

14.
Although a soil vapor extraction system (SVES) had effectively remediated the vadose zone soils at a gasoline spill site in Pawtucket, Rhode Island, gasoline remained in the soils below the water table. The state Department of Environmental Management (DEM) closure criteria of 10,000 parts per billion (ppb) were still not met after five years. This article describes how an air sparging system was added to the effort for $57,000, and how after three weeks, closure criteria were achieved.  相似文献   

15.
This article describes the design, implementation, and operating results for an ex situ ultraviolet/hydrogen peroxide (UVP) system to treat methyl tert‐butyl ether (MTBE) in extracted groundwater. The UVP modification was designed to reduce the operation and maintenance costs of an existing groundwater pump‐and‐treat treatment system that relied on air stripping and carbon adsorption. The UVP system is relatively inexpensive and can easily be scaled to cope with different groundwater extraction rates up to 80 gpm by adding UV lamps in series or in parallel at the higher groundwater extraction rates. The MTBE concentration in the effluent from the UVP system to the carbon vessels decreased from an average of 590 μg/L to approximately 2 μg/L on average over 33 months of operation of the UVP. Incorporation of this UVP modification as a second‐stage treatment to the groundwater pump‐and‐treat/soil vapor extraction system, after the air stripper and prior to the carbon vessels, significantly increased the usable life of the carbon (from two months previously to about two years after installation) and completely resolved the issue of frequent MTBE breakthroughs of the carbon that had plagued the remediation system since its inception. © 2006 Wiley Periodicals, Inc.  相似文献   

16.
The distribution of air around injection wells is an important determinant of the effectiveness, design, and cost of air sparging remediation systems. High-level air sparging field tests were conducted at two sites for the purpose of determining the pattern of airflow under widely different subsurface conditions. One site consisted of relatively homogeneous dune sand (Site A). The other consisted of highly heterogeneous glacial till (Site B). At both sites, cross-borehole electrical resistance tomography (ERT) was used to image the principal region of airflow in the saturated zone. The response of conventional monitoring data was compared with the ERT results. At Site A, the principal region of airflow was approximately symmetric about the sparge well and only 2.4 m in radius. At Site B, the pattern of airflow was much more complex and had a major horizontal component. In both site studies, conventional monitoring data provided a much more ambiguous indication of the region of airflow in the saturated zone than did ERT. The investigations at these two sites demonstrate that, while the exact distribution of injected air is not readily discernible by conventional monitoring, the character of the airflow pattern can be recognized when appropriate physical response data are collected. Such response data can be used to evaluate site suitability for air sparging and to improve the system design and operation.  相似文献   

17.
Chromium is a heavy metal used in various industrial sectors. Improper handling and storage of chromium-laden effluents or wastes can lead to the pollution of the environment. The most toxic form is the more mobile one: hexavalent chromium Cr(VI). The reduction of Cr(VI) results in the immobilisation of chromium into its less toxic trivalent form Cr(III). This phenomenon may prevent the contamination of groundwater when the soil in the vadose zone is contaminated. Many bacteria have been isolated from contaminated soils and described to reduce Cr(VI) into Cr(III). A new Cr(VI)-reducing strain, identified as a Streptomyces thermocarboxydus,has been isolated and studied in our laboratories for its ability to reduce Cr(VI). This aerobic bacterium, in contrast to other genera described which mediate reduction via enzymes, produces reducing agents into the culture supernatants. Cr(VI) reduction by these substances is accelerated by the presence of small concentration of cupric ions (Cu2+). The reducing agent(s) can be easily recovered from the bacterial cultures and used as cell-free solution to treat contaminated soils by an in situ or ex situ processes.  相似文献   

18.
In 1993 environmental consultants, working in concert with the State of Michigan, discovered groundwater contamination that threatened the drinking water supply of the town of Big Rapids. The contamination originated from leaking underground storage tanks and gasoline lines, which were removed. A pilot study indicated the contaminated area extended to 240′ x 180′ and affected soil as well as groundwater. A remediation plan was designed by and implemented by Continental Remediation Systems, Inc., a Natick, Massachusetts, firm. The remediation plan is ongoing and includes an interceptor trench to stop gasoline from flowing into the creek, as well as air sparging to vent and treat the contaminated soil. It is anticipated that the remediation project will take six months to complete. The chief advantage of on-site remediation is that it avoids the costs and liabilities associated with landfill disposal and no materials need leave the site.  相似文献   

19.
Soil and groundwater contamination due to petroleum hydrocarbon spills is a frequent problem worldwide. In Mexico, even when programs oriented to the diminution of these undesirable events exist, in 2000, a total of 1,518 petroleum spills were reported. Exploration zones, refineries, and oil distribution and storage stations frequently are contaminated with total petroleum hydrocarbons (TPH); diesel fraction; gasoline fraction; benzene, toluene, ethyl benzene, and xylenes (BTEX); and polycyclic aromatic hydrocarbons (PAHs). Among the many methodologies available for the treatment of this kind of contaminated soil, bioremediation is the most favorable, because it is an efficient/low‐cost option that is environmentally friendly. This article discusses the capability of using a biopile to treat soils contaminated with about 40,000 mg/kg of TPH. Design and operation of a 27‐m3 biopile is described in this work, including microbiological and respirometric aspects. Parameters such as TPH, diesel fraction, BTEX, and PAHs considered by the U.S. Environmental Protection Agency were measured in biopile samples at 0, 2, 4, 6, 8, 10, and 22 weeks. A final average TPH concentration of 7,300 mg/kg was achieved in 22 weeks, a removal efficiency of 80 percent. © 2007 Wiley Periodicals, Inc.  相似文献   

20.
The treatment of per- and polyfluoroalkyl substances (PFAS) within groundwater is an emerging topic, with various technologies being researched and tested. Currently, PFAS-impacted groundwater is typically treated ex situ using sorptive media such as activated carbon and ion exchange resin. Proven in situ remedial approaches for groundwater have been limited to colloidal activated carbon (CAC) injected into aquifers downgradient of the source zones. However, treatment of groundwater within the source zones has not been shown to be feasible to date. This study evaluated the use of CAC to treat dissolved PFAS at the air–water interface within the PFAS source zone. Studies have shown that PFAS tends to preferentially accumulate at the air–water interface due to the chemical properties of the various PFAS. This accumulation can act as a long-term source for PFAS, thus making downgradient treatment of groundwater a long-term requirement. A solution of CAC was injected at the air–water interface within the source zone at a site with PFAS contamination using direct push technology. A dense injection grid that targeted the interface between the air and groundwater was used to deliver the CAC. Concentrations of PFAS within the porewater and groundwater were collected using a series of nine lysimeters installed within the vadose and saturated water columns. A total of six PFAS were detected in the porewater and groundwater including perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA). Detectable concentrations of PFAS within the pore and groundwater before treatment ranged from values greater than 300 µg/L for PFPeA to less than 3 µg/L for PFNA. Following the injection of the CAC, monitoring of the porewater and groundwater for PFAS was conducted approximately 3, 6, 9, 12, and 18 months postinjection. The results indicated that the PFAS within the porewater and groundwater at and near the air–water interface was effectively attenuated over the 1.5-year monitoring program, with PFAS concentrations being below the method detection limits of approximately 10 ng/L, with the exception of PFPeA, which was detected within the porewater during the 18-month sampling event at concentrations of up to 55 ng/L. PFPeA is a five carbon-chained PFAS that has been shown to have a lower affinity for sorption onto activated carbon compared to the longer carbon-chained PFAS such as PFOA. Examination of aquifer cores in the zone of injection indicated that the total organic carbon concentration of the aquifer increased by five orders of magnitude postinjection, with 97% of the samples collected within the target injection area containing activated carbon, indicating that the CAC was successfully delivered into the source zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号