首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The migration of biogeochemical gradients is a useful framework for understanding the evolution of biogeochemical conditions in groundwater at waste sites contaminated with metals and radionuclides. This understanding is critical to selecting sustainable remedies and evaluating sites for monitored natural attenuation, because most attenuation mechanisms are sensitive to geochemical conditions, such as pH and redox potential. Knowledge of how gradients in these parameters evolve provides insights into the behavior of contaminants with time and guides characterization, remedy selection, and monitoring efforts. An example is a seepage basin site at the Savannah River Site in South Carolina where low‐level acidic waste has seeped into groundwater. The remediation of this site relies, in part, on restoring the natural pH of the aquifer by injecting alkaline solutions. The remediation will continue until the pH upflow of the treatment zone increases to an acceptable value. The time required to achieve this objective depends on the time it takes the trailing pH gradient, the gradient separating the plume from influxing natural groundwater, to reach the treatment zone. Predictions of this length of time will strongly influence long‐term remedial decisions. © 2008 Wiley Periodicals, Inc.  相似文献   

2.
The US Sustainable Remediation Forum (SURF) created a compilation of metrics (Metrics Toolbox) in response to a need for a broad set of metrics that could be used to assess and monitor the effectiveness of remedies in achieving sustainability goals. Metrics are the key impacts, outcomes, or burdens that are to be assessed or balanced to determine the influences and impacts of a remedial action. Metrics can reflect any of the three aspects of sustainability (i.e., environmental, social, or economic) or a combination of these aspects. Regardless, metrics represent the most critical sustainable outcomes from the perspective of the key stakeholders. The Metrics Toolbox is hosted online at www.sustainableremediation.org/library/guidance‐tools‐and‐other‐resources . By selecting metrics from the Metrics Toolbox as a starting point and considering a potentially wider suite of metrics in remedial program decisions, appropriate assessments can be made. Qualitative and quantitative metrics are tabulated for each remedial phase: remedial investigation, remedy selection, remedial design, remedial construction, operation and maintenance, and closure. Attributes for each metric are described so that remediation practitioners and key stakeholders can view the universe of metrics available and select the most relevant, site‐specific metrics for a particular site. For this reason, SURF recommends that remediation practitioners consider the metrics compiled in the Metrics Toolbox as a companion to the sustainable remediation framework published elsewhere in this journal and other sustainability evaluations. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
A survey of experts in the application of natural attenuation was conducted to better understand how monitored natural attenuation (MNA) is being applied at chlorinated solvent sites. Thirty‐four remediation professionals provided general information for 191 sites where MNA was evaluated, and site‐specific data for 45 chlorinated solvent plumes being remediated by MNA. Respondents indicated that MNA was precluded as a remedy at only 23 percent of all sites where evaluated as a remedial option. Leading factors excluding MNA as a remedial approach were the presence of an expanding plume and an unreasonably long estimated remediation time frame. MNA is being used as the sole remedy at about 30 percent of the sites, and 33 percent are implementing MNA in conjunction with source zone remediation. The remaining sites are implementing MNA with plume remediation (13 percent), source containment (9 percent), or some other strategy (16 percent). © 2004 Wiley Periodicals, Inc.  相似文献   

4.
Nitrate has become an increased regulatory concern due to gradual deterioration of surface and groundwater quality primarily related to widespread fertilizer use. Remediation of nitrate is a relatively straightforward process; however, nitrate impacts to groundwater are often a symptom of a sustained source from another nitrogen form (e.g., ammonia, ammonium nitrate, urea), analogous to how nonaqueous phase liquid can serve as a long‐term source of volatile organic compounds in groundwater. Understanding the various nitrogen transformation reactions when selecting, implementing, or documenting a remedy associated with nitrate is therefore critical to successfully reaching remedial endpoints. Case studies are presented that highlight in situ remedial successes with nitrogen‐impacted groundwater and discuss the key considerations that should be factored into remedy application. ©2015 Wiley Periodicals, Inc.  相似文献   

5.
A common industrial solvent additive is 1,4‐dioxane. Contamination of dissolved 1,4‐dioxane in groundwater has been found to be recalcitrant to removal by conventional, low‐cost remedial technologies. Only costly labor and energy‐intensive pump‐and‐treat remedial options have been shown to be effective remedies. However, the capital and extended operation and maintenance costs render pump‐and‐treat technologies economically unfeasible at many sites. Furthermore, pump‐and‐treat approaches at remediation sites have frequently been proven over time to merely achieve containment rather than site closure. A major manufacturer in North Carolina was faced with the challenge of cleaning up 1,4‐dioxane and volatile organic compound–impacted soil and groundwater at its site. Significant costs associated with the application of conventional approaches to treating 1,4‐dioxane in groundwater led to an alternative analysis of emerging technologies. As a result of the success of the Accelerated Remediation Technologies, LLC (ART) In‐Well Technology at other sites impacted with recalcitrant compounds such as methyl tertiarybutyl ether, and the demonstrated success of efficient mass removal, an ART pilot test was conducted. The ART Technology combines in situ air stripping, air sparging, soil vapor extraction, enhanced bioremediation/oxidation, and dynamic subsurface groundwater circulation. Monitoring results from the pilot test show that 1,4‐dioxane concentrations were reduced by up to 90 percent in monitoring wells within 90 days. The removal rate of chlorinated compounds from one ART well exceeded the removal achieved by the multipoint soil vapor extraction/air sparging system by more than 80 times. © 2005 Wiley Periodicals, Inc.  相似文献   

6.
Although the application of microbe biotechnology has been successful with petroleum-based constituents, microbial digestion has met with limited success for widespread residual organic and metal pollutants located above the potentiometric surface. Vegetation-based remediation, on the other hand, shows potential for accumulating, immobilizing, and transforming low levels of persistent contamination from the subsurface. Agricultural bioremediation, called geobotany or phytoremediation, relies on the remediating abilities of contaminant-accumulating plants to remove contamination from soil or groundwater. In natural ecosystems, plants act to filter and metabolize substances generated by nature. Phytoremediation affirmatively applies this process to help clean up contamination created by artificial means. Plants have proven effective at remediating areas contaminated with organic chemical wastes such as petroleum products, solvents, wood preservatives, pesticides, and metals. Phytoremediation is not the best technology for every site but has shown success with lead, cadmium, zinc, and radionuclides. The phytoremediation process takes much longer than conventional methods to clean a site and is dependent upon the type and degree of contamination. Concentrations must be within a narrow range of tolerable levels and the presence of the contamination must be at the appropriate depth. Nevertheless, phytoremediation offers an effective alternative to conventional, engineered remedial plans that usually involve costly activities like excavation, treatment, and disposal of soil or pump-and-treat technologies for groundwater. Phytoremediation also seems to be a promising new technology for the treatment of stormwater, industrial wastewater, and sewage. The relative low costs of capital for start-up together with negligible operations and maintenance costs provide a strong incentive for further investigation and development of phytoremediation projects.  相似文献   

7.
A US EPA directive and related technical protocol outline the information needed to determine if monitored natural attenuation (MNA) for chlorinated solvents is a suitable remedy for a site. For some sites, conditions such as complex hydrology or perturbation of the contaminant plume caused by an existing remediation technology (e.g., pump‐and‐treat) make evaluation of MNA using only field data difficult. In these cases, a deterministic approach using reactive transport modeling can provide a technical basis to estimate how the plume will change and whether it can be expected to stabilize in the future and meet remediation goals. This type of approach was applied at the Petro‐Processors Inc. Brooklawn site near Baton Rouge, Louisiana, to evaluate and implement MNA. This site consists of a multicomponent nonaqueous‐phase source area creating a dissolved groundwater contamination plume in alluvial material near the Mississippi River. The hydraulic gradient of the groundwater varies seasonally with changes in the river stage. Due to the transient nature of the hydraulic gradient and the impact of a hydraulic containment system operated at the site for six years, direct field measurements could not be used to estimate natural attenuation processes. Reactive transport of contaminants were modeled using the RT3D code to estimate whether MNA has the potential to meet the site‐specific remediation goals and the requirements of the US EPA Office of Solid Waste and Emergency Response Directive 9200.4‐17P. Modeling results were incorporated into the long‐term monitoring plan as a basis for evaluating the effectiveness of the MNA remedy. As part of the long‐term monitoring plan, monitoring data will be compared to predictive simulation results to evaluate whether the plume is changing over time as predicted and can be expected to stabilize and meet remediation goals. This deterministic approach was used to support acceptance of MNA as a remedy. © 2007 Wiley Periodicals, Inc.  相似文献   

8.
A former chlorofluorocarbon manufacturing facility in northern New Jersey was purchased for redevelopment as a warehousing/distribution center as part of the New Jersey Department of Environmental Protection's Brownfields redevelopment initiative. Soil and groundwater at the site were impacted with dense nonaqueous‐phase liquids (chlorinated organic compounds) and light nonaqueous‐phase liquids (petroleum hydrocarbons). The initial remedial strategy (excavation and offsite disposal) developed by prior site owners would have been cost‐prohibitive to the new site owners and made redevelopment infeasible. Mixed remedial technologies were employed to reduce the cost of remediation while meeting regulatory contaminant levels that are protective of human health and the environment. The most heavily impacted soils (containing greater than 95 percent of the contaminant mass) were excavated and treated onsite by the addition of calcium oxide and lime kiln dust coupled with physical mixing. Treated soils were reused onsite as part of the redevelopment. Residual soil and groundwater contamination was treated via in situ injections of emulsified oil to enhance anaerobic biodegradation, and emulsified oil/zero‐valent iron to chemically reduce residual contaminants. Engineering (cap) and administrative (deed restriction) controls were used as part of the final remedy. The remedial strategy presented in this article resulted in a cost reduction of 50 percent of the initial remedial cost estimate. © 2008 Wiley Periodicals, Inc.  相似文献   

9.
Greenhouse gas emissions assessments for site cleanups typically quantify emissions associated with remediation and not those from contaminant biodegradation. Yet, at petroleum spill sites, these emissions can be significant, and some remedial actions can decrease this additional component of the environmental footprint. This article demonstrates an emissions assessment for a hypothetical site, using the following technologies as examples: excavation with disposal to a landfill, light nonaqueous‐phase liquid (LNAPL) recovery with and without recovered product recycling, passive bioventing, and monitored natural attenuation (MNA). While the emissions associated with remediation for LNAPL recovery are greater than the other considered alternatives, this technology is comparable to excavation when a credit associated with product recycling is counted. Passive bioventing, a green remedial alternative, has greater remedial emissions than MNA, but unlike MNA can decrease contaminant‐related emissions by converting subsurface methane to carbon dioxide. For the presented example, passive bioventing has the lowest total emissions of all technologies considered. This illustrates the value in estimating both remediation and contaminant respiration emissions for petroleum spill sites, so that the benefit of green remedial approaches can be quantified at the remedial alternatives selection stage rather than simply as best management practices. ©2015 Wiley Periodicals, Inc.  相似文献   

10.
This article provides a case study of how green and sustainable remediation (GSR) concepts (including, but not limited to, worker risk) can be incorporated into the existing National Contingency Plan (NCP)/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedy selection framework. The occupational risks of worker fatalities and injuries associated with two site remediation alternatives were calculated and compared. The results demonstrated that the increased worker risks associated with one of the remedy alternatives rendered it inferior based on the NCP “Balancing Criteria” of short‐term effectiveness. This type of approach is implementable at many sites by leveraging readily available information at the remedy selection stage using published methods and data sources. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
This article quantifies the nature, frequency, and cost of environmental remediation activities for onshore oil and gas operations, as determined from over 4,100 environmental remediation cases in Texas, Kansas, New Mexico, and Colorado. For the purpose of this article, “remediation'' refers to cleanup efforts that entail longer‐term site characterization, monitoring, and remedial action beyond the initial spill cleanup or emergency response stage. In addition, data are also presented regarding short‐term spill cleanup activities in two of the four states. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
The U.S. Department of Energy (US DOE) remediation responsibilities include its Idaho National Laboratory. In 1989, the U.S. Environmental Protection Agency placed the Idaho site on its National Priority List for environmental cleanup. The site's contamination legacy from operations included inactive reactors and other structures, spent nuclear fuel, high‐level liquid radioactive wastes, calcined radioactive wastes, and transuranic wastes. Documents governing cleanup include a 1995 Settlement Agreement between the US DOE and the US Navy as responsible parties, and the State of Idaho. The Subsurface Disposal Area contains buried transuranic wastes, lies above the East Snake River Plain Aquifer, and could be the “site's most nettlesome cleanup issue,” according to an outside observer. This article describes the technical and legal difficulties that have been encountered in remediating this area. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
Groundwater investigations conducted since 1988 at a Tennessee Department of Environment and Conservation (TDEC) Voluntary Oversight and Assistance Program (VOAP) site located in Millington, Tennessee, have defined the lateral and vertical extent of site chemicals of concern (COCs) consisting of tetrachloroethene (PCE), trichloroethene (TCE), and associated degradation products. Results of a groundwater remedial investigation determined that aquifer conditions were favorable for anaerobic degradation of COCs through reductive dechlorination. A subsequent groundwater feasibility study determined that monitored natural attenuation (MNA) coupled with long‐term groundwater monitoring was the most effective and suitable remedial option for the site. A Record of Decision was issued by the TDEC VOAP approving MNA and long‐term groundwater monitoring as the remedial option for the site, a first for such a site in Tennessee involving chlorinated organics. A groundwater fate and transport model (the 1998 model) developed during the RI was used as the basis for the MNA remedy. Analytical data from 1998 to 2008 indicate COCs in former high‐concentration areas continue to degrade at rates consistent with or ahead of the 1998 model predictions. Evidence of reductive dechlorination is also supported by the continued presence of breakdown products—specifically, vinyl chloride and ethene (terminal endpoint of PCE breakdown through reductive dechlorination). The continued detection of breakdown products along the flow‐path wells also confirms the effectiveness of the MNA remedy at the site. Current analytical data indicate that COC plumes beneath the site are not migrating and are actually retracting. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
The U.S. Environmental Protection Agency (US EPA) is placing increased emphasis on the selection and implementation of remedies that accommodate the reasonably anticipated future use of contaminated land. These remedies result in the long‐term protection of human health and the environment. Postconstruction reuse of the land can significantly benefit communities in other ways as well. The launching of the Superfund Redevelopment Initiative in 1999 and the Return to Use Initiative in 2004 reflects an evolution in the US EPA's understanding of what actions can be taken to support the reuse of Superfund sites from discovery through long‐term stewardship. Through these initiatives, the US EPA has increased its understanding of site reuse and continues to explore and implement reuse assessment, reuse planning, and other tools effective in integrating reuse considerations with response activities throughout the remedial process. © 2005 Wiley Periodicals, Inc.  相似文献   

15.
This article presents the results of a pilot test that was conducted to determine the effectiveness of using steam‐enhanced dual‐phase extraction (DPE) at a former industrial site in New York. The pilot test proved that steam‐enhanced DPE was very effective at removing significant contaminant mass from the subsurface in a relatively short time period. Concentrations of volatile organic compounds and semivolatile organic compounds in the vapor stream and groundwater were successfully reduced, in some cases by orders of magnitude. Based on the results of the steam‐enhanced DPE pilot test, the final remedy for the site includes implementing this technology at selected areas as an alternative to DPE alone or other remedial alternatives, such as excavation or groundwater pump and treat. © 2003 Wiley Periodicals, Inc.  相似文献   

16.
The former Nebraska Ordnance Plant site in east-central Nebraska was included on the National Priorities List because of explosives and trichloroethene contamination. The preferred groundwater remedy includes hydraulic containment of the contaminated groundwater and focused extraction of the more highly contaminated groundwater as components of the remedial action. The purpose of hydraulic containment is to stop the spread of contamination, while the more aggressive focused extraction will be used to speed up the remediation and reduce total cleanup costs. This case study illustrates how straightforward groundwater models were combined with uncertainty analysis to select a precise definition of the focused extraction areas. The purpose of the analysis was to reduce ultimate remediation costs, given the significant uncertainty associated with the estimated remediation times. The selected definition provides a basis for more sophisticated groundwater modeling, the goal of which was to locate extraction wells and define their flow rates. The batch flushing model provided the governing equations, and Monte Carlo analysis was used for the uncertainty analysis. All of the analysis was performed on a personal computer using commercially available software.  相似文献   

17.
A common remedial technology for properties with subsurface soil and groundwater contamination is multiphase extraction (MPE). MPE involves the extraction of contaminated groundwater, free‐floating product, and contaminated soil vapor from the subsurface. A network of recovery wells conveys fluids to a vacuum pump and to the treatment system for the contaminated groundwater and soil vapor. This article describes a study of MPE operational data from nine similar remediation projects to determine the most important design parameters. Design equations from guidance manuals were used to estimate the expected radius of influence (ROI) based on measured field data. ROIs were calculated for the vapor flow rate through the subsurface and for the groundwater drawdown caused by the MPE remediation activities. The calculated ROIs were compared to the measured ROIs to corroborate the assumptions made in the calculations. Once it was established that the calculated and field‐measured ROIs were comparable, a sensitivity analysis determined ranges of different design and operational parameters that most affected the ROIs. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Due to the nature of contamination typically found at former MGP (manufactured gas plant) sites, excavation and thermal desorption of MGP wastes has proven to be an effective method for the remediation of MGP‐contaminated soil. The use of on‐site thermal desorption enables MGP sites to be quickly remediated at a low cost. Tar pits, holders, and other underground storage structures typically contain coal tar residuals and waste from former operations, and the areas around these structures are often significantly contaminated. Thus, excavation techniques, odor and vapor management, and material preparation for the treatment method are important factors to consider when developing a site remediation strategy. This article reviews typical excavation and handling methods associated with the remediation of former MGP sites and discusses the treatment of MGP wastes using on‐site thermal desorption technology. © 2001 John Wiley & Sons, Inc.  相似文献   

19.
Residual tetrachloroethene (PCE) contamination at the former Springvilla Dry Cleaners site in Springfield, Oregon, posed a potential risk through the vapor intrusion, direct contact, and off‐site beneficial groundwater uses. The Oregon Department of Environmental Quality utilized the State Dry Cleaner Program funds to help mitigate the risks posed by residual contamination. After delineation activities were complete, the source‐area soils were excavated and treated on‐site with ex situ vapor extraction to reduce disposal costs. Residual source‐area contamination was then chemically oxidized using sodium permanganate. Dissolved‐phase contamination was subsequently addressed with in situ enhanced reductive dechlorination (ERD). ERD achieved treatment goals across more than 4 million gallons of aquifer impacted with PCE concentrations up to 7,800 micrograms per liter prior to remedial activities. The ERD remedy introduced electron donors and nutrient amendments through groundwater recirculation and slug injection across two aquifers over the course of 24 months. Adaptive and mass‐targeted strategies reduced total remedy costs to approximately $18 per ton within the treatment areas. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
This article summarizes the project and risk management of a remediation/reclamation project in Lavrion, Greece. In Thoricos the disposal of mining and metallurgical wastes in the past resulted in the contamination with heavy metals and acid mine drainage. The objective of this reclamation project was to transform this coastal zone from a contaminated site to an area suitable for recreation purposes. A separate risk assessment study was performed to provide the basis of determining the relevant environmental contamination and to rate the alternative remedial schemes involved. The study used both existing data available from comprehensive studies, as well as newly collected field data. For considering environmental risk, the isolation and minimization of risk option was selected, and a reclamation scheme, based on environmental criteria, was applied which was comprised of in situ neutralization, stabilization and cover of the potentially acid generating wastes and contaminated soils with a low permeability geochemical barrier. Additional measures were specifically applied in the areas where highly sulphidic wastes existed constituting active acid generation sources, which included the encapsulation of wastes in HDPE liners installed on clay layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号