首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
在地震中,曲线梁桥的反应较为复杂,容易发生碰撞甚至是落梁,板式橡胶支座经常会发生较大滑移,这种支座的滑移特性又会显著地改变曲线梁桥的动力反应。以某座板式橡胶支座曲线连续梁桥为研究对象,建立桥梁的多尺度有限元模型,通过非线性时程方法,分析了地震作用下曲线梁桥上部结构、支座和下部结构的动力反应。在此基础上,采用显式动力接触算法,模拟了主梁与桥台间的碰撞行为,并改变支座摩擦系数的取值,分别研究了梁端碰撞效应和板式橡胶支座摩擦系数对桥梁结构地震反应的影响。结果表明,由于曲线梁桥内、外侧支座竖向反力的差异,使得内侧板式橡胶支座较外侧支座更容易发生滑移,外侧桥墩受力明显较内侧桥墩复杂;碰撞作用降低了支座的抗滑能力,使得主梁端部位移和墩底内力都有所增大;支座的抗滑能力随着摩阻系数的增大而显著提高,摩阻系数和碰撞作用对桥墩扭矩的影响都较为显著。  相似文献   

2.
为了研究软土地区地震作用下高墩先简支后桥面连续梁桥的支座选型及横桥向抗震约束问题,选取了普通板式橡胶支座、钢阻尼滑板支座、LNR 橡胶支座和 HDR 高阻尼支座四种支座类型,以软土地区某(4×30)m 跨径高墩先简支后桥面连续梁桥为例,进行了延性抗震体系和减隔震体系抗震设计对比以及设置挡块的横桥向抗震约束效果研究。结果表明:软土地区高墩先简支后桥面连续梁桥墩柱配筋率主要由 E1 地震作用下墩底截面偏心受压检算工况决定,采用减隔震体系并不能降低桥墩配筋率。通过对采用四种不同支座桥梁的内力、墩梁相对位移以及配筋率方面综合分析可知,软土地区高墩先简支后桥面连续梁桥的周期较长,这类桥梁抗震关键问题是防止落梁、减小墩顶位移。采用普通板式橡胶支座并合理的设计纵横向防落梁装置的延性抗震体系更适宜于软土地区高墩梁式桥,合理设计抗震挡块可以起到很好的横向约束作用,避免横向落梁的发生。  相似文献   

3.
考虑支座非线性和桥墩弹塑性的影响,建立了不等墩高5跨非规则简支梁桥的有限元模型。采用非线性时程分析方法计算了不同地震波输入下多跨简支梁桥的纵向地震反应,研究了非规则多跨简支梁桥邻跨刚度比及上部结构间相互碰撞效应对桥梁纵向地震位移反应和内力反应的影响规律。研究表明,邻跨刚度比对非规则多跨简支梁桥的桥墩剪力、墩底弯矩、墩顶位移、梁体位移、墩梁间相对位移及主梁间相对位移有着显著的影响,并且邻跨刚度相差越大,影响越为显著,更容易使上部梁体发生落梁破坏;考虑桥梁上部结构碰撞效应时,邻跨比对桥梁结构反应的影响受地震波的影响较大,碰撞未必加剧落梁破坏。  相似文献   

4.
斜交桥动力特性复杂、震害多样,准确评估斜交桥地震反应意义重大,尤其在基于性能桥梁抗震设计中,需要对斜交桥三维精细化模型进行非线性地震反应分析。以单跨斜交桥为研究对象,建立考虑桥台非线性特性和双向碰撞作用的桥梁三维精细化有限元模型,开展水平双向近场地震动作用下结构的非线性地震反应分析,研究不同桥台横向约束模型对斜交桥地震反应的影响以及不同斜交角度斜交桥地震反应规律。结果表明:桥台横向约束条件对斜交桥地震反应有较大影响,在抗震性能分析中需对桥台和碰撞作用进行合理考虑;桥台双向碰撞作用对上部结构平面转动的影响显著,且易导致桥台钝角处的回填土失效和锐角处的挡块损伤;斜交桥的碰撞力明显高于直桥,纵向位移和平面转角随斜交角度的增大而增大。  相似文献   

5.
多次地震灾害调查显示,在纵桥向地震作用下,梁桥往往会发生伸缩缝的破坏、主梁的碰撞、主梁的落梁以及由主梁落梁碰撞墩柱而导致的整体性垮塌,其中主梁的落梁在地震灾害统计中占据了相当大的比例。以西部山区具有不等高桥墩的典型梁桥为研究对象,在桥梁的关键部位设置限位墩,通过有限元分析手段对桥梁的整体抗纵向地震性能进行了研究。结果表明:在连续梁桥中设置限位墩,虽然在一定程度上增大了主梁之间的碰撞,但是能够有效地减小墩梁相对位移和普通墩的墩底最大弯矩,并且在普通连续梁桥中,墩梁相对位移是随着墩高的增大而增大的,因此,应该尽可能地把限位墩设置在墩高较高的地方。同时,如果桥梁较长需要设置多个限位墩的时候,限位墩之间的间距则需要加以考虑。  相似文献   

6.
针对连续梁桥设置了不同组合的减隔震支座,采用动力时程分析方法探讨桥梁结构的抗震性能,对比分析了不同支座的减隔震效果。研究发现采用板式橡胶支座组合时,桥梁结构的各项地震响应均相对较大,支座承受的水平剪力相对较小;采用高阻尼橡胶支座组合时,支座的滞回耗能使地震作用下的主梁位移以及桥墩墩底弯矩、剪力、墩顶位移均有所减小,桥梁结构的抗震性能相对较好。减隔震设计能在一定程度上减小地震引起的桥梁结构损伤。  相似文献   

7.
以一座最大墩高50m曲线钢管混凝土空间组合桁架连续梁桥为工程背景,采用OpenSees建立其弹塑性三维有限元动力分析模型,从PEER地震数据库中选取10条地震动记录对其进行增量动力分析。以典型墩最不利截面材料损伤应变所对应截面曲率为损伤指标,利用能力需求比对数函数进行回归分析,计算不同构件在不同损伤状态下的破坏概率,建立墩柱易损性曲线和支座易损性曲线。基于联合失效概率分析方法,形成了桥梁系统易损性曲线。同时建立多个对比模型,分析墩跨比和曲线半径对桥梁易损性影响。结果表明:钢管格构桥墩高度差异不大时,和钢筋混凝土桥墩相邻的首个钢管格构桥墩震动响应较大;本桥墩和梁之间大量使用橡胶支座从而形成弹性连接和铰接的减震措施,可有效降低桥梁完全破坏概率;墩跨比增大将导致桥梁系统完全破坏损伤概率随之增大;随着曲线半径增大,损伤概率逐渐增大,曲线桥本身拱结构对顺桥向地震有一定抵抗作用。  相似文献   

8.
以汶川大地震中严重破坏的回澜立交桥为例,基于数值模拟手段并结合现场震害调查,分析了回澜立交桥的地震破坏机理。数值分析表明,地震时设有支座的最矮的1号桥墩支座发生滑移破坏,以致刚度较大(次矮)的2号刚构桥墩承受很大的地震惯性力,2号墩首先发生弯曲屈服,此后随延性发展因抗剪能力不足最终发生剪切破坏直至倒塌损毁,呈现典型的弯剪破坏特征。现场震害调查发现,回澜立交桥震害集中于抗弯刚度较大的刚构墩上,而其余桥墩震害相对较轻,主要表现为混凝土保护层的脱落、混凝土开裂以及墩顶支座的滑移破坏等。数值分析结果与震害调查呈现出较好的一致性。  相似文献   

9.
大跨连续梁桥纵向延伸较长,地震发生时各个支承处的地震波的振幅和频率是不同的.以某12跨预应力混凝土连续梁桥为例,推导了结构的运动方程,采用有限元结构分析软件ANSYS建立了该桥的动力分析模型,进行了模态分析和时程分析.通过输入不同波速的地震波,计算行波激励下桥梁的地震反应,并和一致激励下的结果进行对比,分析了行波效应对桥梁地震反应的影响.结果表明:滑动支座摩擦力减小了桥梁纵向的地震反应,但对桥梁横向地震反应影响较小.行波效应减小了制动墩的纵向地震反应,增大了其它桥墩的纵向地震反应,但对桥梁横向地震反应影响较小.  相似文献   

10.
基于对目前城市桥梁通常采用的独柱墩连续梁桥的受力和结构设计存在的问题和缺陷,提出了两跨T形刚构桥梁结构形式,并对两种桥梁结构形式在构造、静力行为和抗震性能方面的特点进行了研究。与连续梁桥相比,独柱墩T形刚构桥通过墩梁固结节省了支座,简化了伸缩缝的构造,增加了桥梁的横向稳定性,大大减小了横梁的受力。静力研究表明,两种结构在自重、温度及活载作用下,弯矩和变形基本接近,但T形刚构预应力损失小,且预应力次力矩对于主梁抗弯产生了有利效果。地震反应分析结果显示,墩梁固结能够显著降低地震力作用下桥墩和桩基的弯矩,提高了桥梁的抗震能力,简化了抗震构造。  相似文献   

11.
总结了5· 12汶川大地震中简支梁桥落梁震害及主要影响因素,发现除地震山体滑坡等地质灾害外,断层地表破裂、近断层地震动效应、桥台胸墙冲切破坏、防落梁构造措施单一及桥梁体型复杂等因素都是引起简支梁桥落粱震害的重要原因.提出了简支梁桥防落梁设计的基本理念及相关技术方案要点为允许墩梁间发生滑移,以降低桥墩承受的地震惯性力,以...  相似文献   

12.
为进一步研究连续刚构桥的地震响应规律,以某连续刚构桥为例,建立了不同工况下连续刚构桥数值计算模型,充分考虑负相关因素,采用基准值误差与改进的灰色 T 型关联分析方法,以地震作用下某连续刚构桥墩顶顺桥向弯矩、墩底横桥向弯矩、墩底顺桥向弯矩和跨中横桥向弯矩为评价指标,进行了地震作用下连续刚构桥灰色关联参数敏感性分析。分析结果表明:高墩墩顶顺桥向弯矩对梁底曲线幂次的变化更敏感,矮墩墩顶顺桥向弯矩对根部梁高高跨比的变化更敏感,而墩底顺桥向弯矩则对墩高比的变化更敏感;高墩墩底横桥向弯矩对跨中梁高高跨比的变化更为敏感,矮墩墩底横桥向弯矩则对根部梁高高跨比相对更敏感;主梁跨中横桥向弯矩则对跨中梁高高跨比的变化更为敏感。该敏感性分析方法,可为连续刚构桥抗震设计及防灾减灾提供一定参考。  相似文献   

13.
高架桥梁是城市交通网络的连接枢纽,在国内外历次大地震下高架桥梁都遭受了严重破坏。本文针对高架桥梁在地震作用下的碰撞和落梁,阐述了一维纵向碰撞以及扭转碰撞分析中所涉及的相关问题,并针对高架桥梁碰撞的磁流变阻尼器(MR)半主动控制以及采用形状记忆合金(SMA)限位器的落梁控制进行了研究。  相似文献   

14.
长大高铁桥梁墩柱基础所处地质条件可能存在较大差异,地震动的特性会发生较大变化,若不考虑这种变化,计算结果不能反映桥梁实际地震响应,甚至可能偏不安全。以24跨跨径为32 m的高铁简支梁桥为研究对象,采用绝对位移法考虑地震动的多点激励,分析主梁和轨道的位移和变形、支座剪力和位移以及桥墩的变形及内力等地震响应特性,并与一致激励进行对比。结果表明:考虑多点激励后,场地转换处轨道和主梁的横向和竖向相对位移均明显增大,轨道整体变形呈蛇形波动,在伸缩缝处出现局部突变,轨道的这些变形特性会严重威胁高速运行的列车的行车安全;在场地转换处主梁纵向相对位移亦显著增大,可能造成落梁;支座和墩柱的位移和内力主要受场地类型的影响,场地越不利,地震响应越大。  相似文献   

15.
地震序列下桥梁连梁装置的防落梁效果分析   总被引:1,自引:0,他引:1  
在各类地震序列中,主-余震所占比例最大。主震震级越高其余震的震级亦越高,对结构的破坏越大。桥梁结构作为重要交通枢纽工程,其在整个地震序列发生时应确保通行,起到生命线工程的作用。选用集集地震序列对桥梁结构进行非线性时程分析,发现结构在主震作用下梁墩相对位移过大、主梁发生落座,余震作用下结构有发生落梁的可能。对结构设置防落梁装置,并进行非线性时程分析,结果显示连梁装置可有效抑制桥梁上、下部结构相对位移,提高结构抗推能力与整体性,保证了结构在整个地震序列中不发生落梁震害。在抗震分析中,应考虑到强余震对结构带来的影响,保证损伤结构在地震序列中的安全。  相似文献   

16.
为提升梁式桥的抗震性能,实现桥梁结构在地震作用下力学行为的可控性,基于减隔震设计原理,研发了一种功能可控型减隔震支座。通过数值模拟和模型试验研究了该支座的力学行为,结果表明:支座的滑动性能良好,摩擦行为稳定;剪力销力学行为可控,断后摩擦行为正常;环形钢阻尼元件滞回曲线饱满,耗能能力强;可控型支座整体力学行为稳定可控。最后以某3跨桥梁为例分析了可控型支座的减隔震效果,结果表明:合理选用可控型支座可以实现结构在地震作用下力学行为的可控性,使结构响应在力和位移之间取得较好的平衡,从而达到避免桥墩损伤破坏、防止落梁的目的。  相似文献   

17.
为研究简支梁桥在地震荷载作用下的碰撞响应和各因素对碰撞响应的影响程度,以一座3跨简支梁桥为研究对象,对桥梁碰撞响应的影响因素进行了动力非线性时程反应分析,得到了以下分析结果:纵向地震下,碰撞不会显著增大简支梁桥墩底的剪力和弯矩,但巨大的撞击力会给桥梁结构带来诸多不利影响;接触单元模型中碰撞刚度的取值对撞击力的正确模拟至关重要,碰撞刚度取值不同基本上不会改变结构的地震响应;梁体间的撞击力对邻梁间隙反应敏感,随着邻梁间隙的增大,撞击力和撞击次数逐渐减小,墩底剪力和弯矩逐渐增大;随着墩高比的增大,墩底剪力和弯矩不断减小,墩顶位移呈增大趋势,撞击力变化较大,但当相邻跨墩高相差不大时,撞击力相对而言要小得多;将不同的地震动峰值加速度调整到相同时,简支梁桥的地震响应差异很大。  相似文献   

18.
考虑群桩-土相互作用影响,对梁式桥在顺桥向水平地震作用下的子结构拟动力试验方法进行了研究。在建立的结构试验模型中,可以取桥梁支座、桥墩或桩基础作为试验子结构置于异地实验室进行试验实测,其余部分进行数值模拟。基于网络化结构实验室Net SLab系统,开发了考虑群桩-土相互作用的梁式桥远程协同子结构拟动力试验程序。进行了一系列梁式桥远程虚拟子结构拟动力试验,并将试验结果与SAP2000时程分析结果进行了对比,验证了试验程序的可靠性。  相似文献   

19.
为了探究非规则多跨连续梁桥的横向地震碰撞问题,提高同类桥梁的防震减灾能力,以广东潮安韩江大桥为研究对象,建立了考虑减隔震支座非线性与桩-土相互作用的横向碰撞计算模型,分析了横向碰撞特征及其对结构地震反应的影响,针对接触刚度与初始间隙进行了参数分析,并对橡胶垫片的减碰效果及其厚度的影响进行了探讨。结果表明:(1)横向碰撞可以减小梁墩相对位移,但会产生较大的碰撞力从而增加桥墩受力,并使各墩地震力分布更不均匀;(2)接触刚度的增加虽然可以减小梁墩相对位移,但当刚度值较大时梁墩相对位移的减幅趋缓,过大的刚度取值反而会引起桥墩过大的内力;(3)初始间隙的影响有一定的不确定性,但总体而言初始间隙较小时碰撞力与桥墩受力较大;(4)橡胶垫片可显著减小碰撞力与墩底弯矩,在工程条件允许时可适当增加垫片厚度。  相似文献   

20.
为了研究近场脉冲地震下桥梁结构的时变抗震性能,以一座常规连续梁桥为研究对象,引入氯离子侵蚀模型,在考虑多种不确定性因素基础上,采用拉丁超立方抽样建立不同服役时期的时变模型样本,运用增量动力分析方法,从能力、需求以及倒塌等方面对算例桥梁的时变抗震性能进行了研究和评价。结果表明:近场脉冲型地震下结构的抗震需求明显大于远场地震;氯离子侵蚀导致钢筋锈蚀后力学性能发生改变,箍筋对核心混凝土约束能力减弱,锈蚀纵筋屈服强度及极限拉应变都降低,导致桥墩的变形能力下降;与地面运动的不确定性相比,模型参数的不确定性对结构的抗震需求均值及离散性影响均不大;随着服役时间延长,钢筋锈蚀加剧,桥墩出现倒塌破坏的概率加大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号