首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: A greenhouse warming would have major effects on water supplies and demands. A framework for examining the socioeconomic impacts associated with changes in the long-term availability of water is developed and applied to the hydrologic implications of the Canadian and British Hadley2 general circulation models (GCMs) for the 18 water resource regions in the conterminous United States. The climate projections of these two GCMs have very different implications for future water supplies and costs. The Canadian model suggests most of the nation would be much drier in the year 2030. Under the least-cost management scenario the drier climate could add nearly $105 billion to the estimated costs of balancing supplies and demands relative to the costs without climate change. Measures to protect instream flows and irrigation could result in significantly higher costs. In contrast, projections based on the Hadley model suggest water supplies would increase throughout much of the nation, reducing the costs of balancing water supplies with demands relative to the no-climate-change case.  相似文献   

2.
ABSTRACT: The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2°C; a 15 percent increase for a warming of 4°C. A warming of 2° to 4°C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from ?39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. In this humid temperate climate, where precipitation is evenly distributed over the year, decreases in snow accumulation in the northern part of the basin and increases in evapotranspiration throughout the basin could change the timing of runoff and significantly reduce total annual water availability unless precipitation were to increase concurrently.  相似文献   

3.
ABSTRACT: The Thornthwaite moisture index is a useful indicator of the supply of water (precipitation) in an area relative to the demand for water under prevailing climatic conditions (potential evapotranspiration). This study examines the effects of changes in climate (temperature and precipitation) on the Thornthwaite moisture index in the conterminous United States. Estimates of changes in mean annual temperature and precipitation for doubled-atmospheric CO2 conditions derived from three general circulation models (GCMs) are used to study the response of the moisture index under steady-state doubled-CO2 conditions. Results indicate that temperature and precipitation changes under doubled-CO2 conditions generally will cause the Thornthwaite moisture index to decrease, implying a drier climate for most of the United States. The pattern of expected decrease is consistent among the three GCMs, although the amount of decrease depends on which GCM climatic-change scenario is used. Results also suggest that changes in the moisture index are related mainly to changes in the mean annual potential evapotranspiration as a result of changes in the mean annual temperature, rather than to changes in the mean annual precipitation.  相似文献   

4.
ABSTRACT: We evaluated the effects of institutional responses developed for coping with a severe sustained drought (SSD) in the Colorado River Basin on selected system variables using a SSD inflow hydrology derived from the drought which occurred in the Colorado River basin from 1579–1616. Institutional responses considered are reverse equalization, salinity reduction, minimum flow requirements, and temporary suspension of the delivery obligation of the Colorado River Compact. Selected system variables (reservoir contents, streamflows, consumptive uses, salinity, and power generation) from scenarios incorporating the drought-coping responses were compared to those from Baseline conditions using the current operating criteria. The coping responses successfully mitigated some impacts of the SSD on consumptive uses in the Upper Basin with only slight impacts on consumptive uses in the Lower Basin, and successfully maintained specified minimum streamflows throughout the drought with no apparent effect on consumptive uses. The impacts of the coping responses on other system variables were not as clear cut. We also assessed the effects of the drought-coping responses to normal and wet hydrologic conditions to determine if they were overly conservative. The results show that the rules would have inconsequential effects on the system during normal and wet years.  相似文献   

5.
ABSTRACT: This paper addresses the possible impacts of global climate change on low streamflows in the Midwest, both directly, through lower precipitation, and indirectly, by rendering irrigation profitable in areas where it has found little application in the past. In the analysis presented here, streamflow data are altered to represent the effect of climate change and stream-supplied irrigation, and then used to estimate new values for two low-flow criteria, the one- and seven-day-ten-year low flows (7Q10 and 1Q10) under 20 climate change and irrigation scenarios. Additionally, the frequencies of violation of these two criteria, and multiple violations in a three-year period, are determined. Results show that the potential impact of the assumed climate change scenarios on low flow standards is substantial. A 25 percent decrease in mean precipitation results in a 63 percent reduction in design flow, even in the absence of irrigation. With irrigation, the reduction can be as much as 100 percent. The frequency of single violations of low flow criteria is found to increase several fold with irrigation. The frequency of multiple violations of low flow criteria in a three-year period is sensitive to climate change, increasing from around 20 percent to nearly 100 percent as the climate change becomes more severe.  相似文献   

6.
ABSTRACT: Historical records of streamflow for an eastward- and a westward-draining stream in the northern Sierra Nevada have been analyzed for evidence of changes in runoff characteristics and patterns of variability. A trend of increasing and more variable winter streamflow began in the mid-1960s. Mean monthly streaniflow during December through March was substantially greater for water years 1965–1990 compared to water years 1939–1964. Increased winter and early-spring streamflow during the later period is attributed to small increases in temperature, which increase the rain-to-snow ratio at lower altitudes and cause the snowpack to melt earlier in the season at higher altitudes. The timing of snowmelt runoff on the western slope of the Sierra Nevada is more sensitive than it is on the eastern slope to changes in temperature, owing to predominantly lower altitudes on the west side. This difference in sensitivity suggests that basins on the east side of the Sierra Nevada have a more reliable water supply (as snow storage) than western-slope basins during warming trends.  相似文献   

7.
ABSTRACT: Societal trends indicate an increased need for university water researchers to develop and improve working relationships with state legislatures to help ensure that water related legislation is based on sound water resources information. Recommendations for providing technical support to state legislatures on water resources issues include: the necessity for researchers to take the initiative; the importance of researchers capitalizing on existing linkages; the need to maintain a continuous link between key legislators, legislative staff, and researchers; and the need for researchers to provide comprehensible information in a timely manner.  相似文献   

8.
ABSTRACT: Seasonal precipitation predictions were utilized in a water management decision with major economic, societal, and political ramifications. A summer (1984) drought had created a situation calling for possible fall season use of state waters from two major multipurpose reservoirs with an ensuing effect on water price negotiations. Choices facing management and use of water from the reservoirs were to invoke expensive water restrictions with a 33 percent chance of being right, do nothing (66 percent chance of wrong outcome), or use the precipitation predictors (for above normal fall rain) having a 50 percent chance of error. Hydrologists chose to follow the precipitation predictions, which proved to be accurate for the fall of 1984, helping to reveal the long-term value of using well understood climate predictions in water management.  相似文献   

9.
ABSTRACT The Las Vegas Valley in southern Nevada has provided ample opportunity for mission oriented water resources research, and, to some extent, application of those research results. Past studies of the ground-water systems have resulted in the construction of a direct electrical analog, two digital simulation models, a Hele-Shaw fluid analog, a linear programming model, and two dynamic programming models. The work accomplished has dealt with the problems of groundwater management, waste water reclamation and artificial recharge, and conjunctive use water management. The current study is attempting to integrate previous results and new work into a detailed and realistic conjunctive use water resource management model to achieve system efficiency under more than one criteria. The research team is interdisciplinary in nature and encompasses the physical and social sciences.  相似文献   

10.
ABSTRACT: The sensitivity of streamflow to climate change was investigated in the American, Carson, and Truckee River Basins, California and Nevada. Nine gaging stations were used to represent streamflow in the basins. Annual models were developed by regressing 1961–1991 streamflow data on temperature and precipitation. Climate-change scenarios were used as inputs to the models to determine streamflow sensitivities. Climate-change scenarios were generated from historical time series by modifying mean temperatures by a range of +4°C to—4°C and total precipitation by a range of +25 percent to -25 percent. Results show that streamflow on the warmer, lower west side of the Sierra Nevada generally is more sensitive to temperature and precipitation changes than is streamflow on the colder, higher east side. A 2°C rise in temperature and a 25-percent decrease in precipitation results in stream-flow decreases of 56 percent on the American River and 25 percent on the Carson River. A 2°C decline in temperature and a 25-percent increase in precipitation results in streamflow increases of 102 percent on the American River and 22 percent on the Carson River.  相似文献   

11.
Engineers have traditionally led the planning effort in water resources developments. The engineer's leadership role in water resources, as well as in many other planning activities, has been challenged by technical and scientific people as well as by the general public for insensitivity to social, aesthetic, ecological, and political problems created by planning. The paper draws attention to the fact that the engineer cannot continue to expect the role of leadership to fall to him unless he prepares himself properly for that role. However, it is brought out that the engineer, by his education and training, is still the best qualified among all the representatives of the various disciplines associated with water resources planning to lead the planning effort if he prepares himself for the task. The requirements for preparation for leading water resources planning are outlined.  相似文献   

12.
ABSTRACT: Individuals involved in state water resource planning generally have avoided any development of a comprehensive public water planning investment model that would set the stage for quantitative recommendations of a “what ought to be” tone for future water strategies. Three New Hampshire towns were selected to illustrate the usefulness of a mixed integer multiperiod programming model that utilizes hydrologic and economic data for identifying the discounted least cost of water supply, distribution, and scheduling. Comparisons are made regarding the feasibility of a regional water system approach versus independent “town by town” water supplies that presently prevail. To analyze the sensitivity of optimal water planning solutions to projected water demands, variations in these demands are made.  相似文献   

13.
ABSTRACT: The projected increase in the concentration of CO2 and other greenhouse gases in the atmosphere is likely to result in a global temperature increase. This paper reports on the probable effects of a temperature increase and changes in transpiration on basin discharge in two different mountain snowmelt regions of the western United States. The hydrological effects of the climate changes are modeled with a relatively simple conceptual, semi-distributed snowmelt runoff model. Based on the model results, it may be concluded that increased air temperatures will result in a shift of snowmelt runoff to earlier in the snowmelt season. Furthermore, it is shown that it is very important to include the expected change in climate-related basin conditions resulting from the modeled temperature increase in the runoff simulation. The effect of adapting the model parameters to reflect the changed basin conditions resulted in a further shift of streamflow to April and an even more significant decrease of snowmelt runoff in June and July. If the air temperatures increase by approximately 5°C and precipitation and accumulated snow amounts remain about the same, runoff in April and May, averaged for the two basins, is expected to increase by 185 percent and 26 percent, respectively. The runoff in June and July will decrease by about 60 percent each month. Overall, the total seasonal runoff decreases by about 6 percent. If increased CO2 concentrations further change basin conditions by reducing transpiration by the maximum amounts reported in the literature, then, combined with the 5°C temperature increase, the April, May, June, and July changes would average +230 percent, +40 percent, ?55 percent, and ?45 percent, respectively. The total seasonal runoff change would be +11 percent.  相似文献   

14.
ABSTRACT: The Gunnison River drains a mountainous basin in western Colorado, and is a large contributor of water to the Colorado River. As part of a study to assess water resource sensitivity to alterations in climate in the Gunnison River basin, climatic and hydrologic processes are being modeled. A geographic information system (GIS) is being used in this study as a link between data and modelers - serving as a common data base for project personnel with differing specialties, providing a means to investigate the effects of scale on model results, and providing a framework for the transfer of parameter values among models. Specific applications presented include: (1) developing elevation grids for a precipitation model from digital elevation model (DEM) point-elevation values, and visualizing the effects of grid resolution on model results; (2) using a GIS to facilitate the definition and parameterization of a distributed-parameters, watershed model in multiple basins; and (3) nesting atmospheric and hydrologic models to produce possible scenarios of climate change.  相似文献   

15.
ABSTRACT: Australia's extremely limited water resources highlight the need for policy guidelines for management. During the 1970s, there was the gradual evolution of a national water resources policy, facilitated by a nationally agreed statement of objectives and culminating in a federal policy statement presented in 1979. However, the Australian constitution gives major responsibility for water resources to the states. Further, the federal policy statement seems to assume that each state has a water resources policy and that it accords with the nationally agreed objectives. This is not the case, and the practical management of Australia's water resources falls short of the principles set out in the policy document. The River Murray, the nation's major water resource, provides ample evidence of this fact. With very limited water resources, Australia urgently needs to reduce the disparity between principle and practice in their management.  相似文献   

16.
A matrix has been developed to guide the assessment of urban water resources. The matrix provides a means for determining the relative importance of water-related problems, and for identifying the data needed to evaluate these problems for the purpose of urban planning. The matrix columns list nine categories of potential water-related urban problems. The rows list 51 categories of data inputs which may be needed to evaluate the potential problems. The inputs include standard types of basic hydrologic data, information based on analysis and interpretation of these data, and information on the interfacing factors of climate, land, and culture. A system is described for ranking the relative importance of the problem categories and data inputs on a numerical scale of 0 to 3. From this, an index is derived that evaluates the relative importance of each input item to an overall program for water resource assessment. From the completed matrix the hydrologist can determine the availability of data to meet the identified requirements. Judgement can then be made as to priorities on work elements to provide the planner with maximum information in minimum time. The matrix also provides a basis for the development of programs and their funding in order to overcome critical data deficiencies.  相似文献   

17.
Historically, the main objective of water resources development has been economic efficiency, and the technique for its evaluation has been benefit-cost analysis. Gradually other objectives have emerged, and these in order of their emergence are regional income redistribution, environmental quality and social well-being. These multi-objectives have given rise to multifarious problems, and have made the planning process much more complex than ever before. The different objectives are not mutually exclusive, and, hence, contributions to one can only be made at the expense of others. Trade-off studies between different objectives are difficult to make. It is suggested that one way to overcome this difficulty could be to design a system to perform optimally in terms of one objective, subject to a specified level of performance of the other, which in effect becomes a constraint. The paper also discusses the pros and cons of the desirability of public participation in our decision-making processes, and the necessity of developing social sciences models to aid water planning and management.  相似文献   

18.
ABSTRACT: Federal spending on water resource development projects exceeds $10 billion annually. This paper examines the economic theory and practice on which the Federal water resource development plans are based. Existing theoretical and applied problems result in overinvestment. These include 1) no standard of value for the tradeoff of environmental objectives with economic objectives; 2) benefits based on “willingness to pay,” but beneficiaries pay only a fraction of a project's costs; 3) beneficiaries “shop around” among program purposes in order to reduce their commitments; and 4) benefit/cost (B/C) analyses are based on a discount rate, which is consistently below the Federal borrowing rate. Furthermore, the Government Accounting Office (GAO) frequently finds that the agency regulations are inadequate and result in inconsistent and questionable benefit computations. The President has proposed a series of water policy reforms, to reduce some of the apparent overinvestment in water resource development, but fundmental corrective action rests with the members of Congress.  相似文献   

19.
ABSTRACT Water resources planning in India since the First Five-Year Plan (1951-1956) has been a very important part of national development planning. However, records show that the results of such planning in the last three decades have fallen short of expectations because of various complex factors. Most of the limiting factors are administrative, political, legal, and philosophical, involving premature comprehensive planning, arbitrary selection of plan targets, administrative “red-tape,” ineffective coordination among water resources related departments, and water ownership conflicts among various states and with neighboring countries. Other constraints are related to a lack of adequate dependable data, the inadequacy of project feasibility studies, and a lack of social and political discipline necessary for adequate mobilization of financial resources.  相似文献   

20.
ABSTRACT: This paper examines the critical interaction between existing Texas water law and the state's water resources. Conjunctive use and management of interrelated water resources, though seldom practiced, is generally considered desirable. However, a significant barrier to the coordinated, efficient use and management of water resources is the legal division of water in the various phases of the hydrologic cycle into different classes and recognition of well-defined water rights in the separate phases. Several examples of the problems which relate to, or result from, present Texas water law and which prevent correlated water resource management are discussed. Any substantive revision of Texas law, particularly ground water law, will apparently be difficult to achieve in the immediate future, primarily because of the large number of recognized private water rights and the political power inherent in them. Data necessary for operation of conjunctive management systems are gradually being acquired, and perhaps someday other hydrologic phases can be integrated with surface and ground water. Nevertheless, Texas courts and the legislature have sufficient information on the interrelated hydrologic cycle so that prospective water conflicts should be anticipated and avoided. Great care must be exercised in the recognition of new types of private water rights or extension of existing rights, because this institutional structure, once established, presents a formidable obstacle to desirable revisions of the law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号