首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
ABSTRACT: A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wet. land density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.  相似文献   

2.
ABSTRACT: The salinity of the lower South Platte River in Colorado is characterized by plotting the average annual flow, total dissolved solids, and salt mass flow against distance along the stream. The plots show that salts are being leached from the irrigated lands above Greeley and are being deposited on the irrigated lands below Greeley. The salt deposition on the lower lands will result in their salination. The plots show also that fall and winter stream flows carry most of the salt loads. These fall and winter flows are stored in off stream reservoirs for use during the irrigation season. Therefore these salts are transferred to the lower irrigated lands where they accumulate. The salt balance for these lands can be improved by permitting the fall and winter flows to leave the basin, or by providing adequate land drainage coupled with supplemental irrigation water.  相似文献   

3.
ABSTRACT. The occurrence of ground water in the lower North Platte Valley, Goshen County, Wyoming, was studied to determine safe yield within the alluvial aquifer under varying discharge and recharge conditions. The alluvium of the North Platte is extensively developed for irrigation purposes and the effects of large-scale pumpage are of major concern. Actual withdrawals are estimated to be 46,000 acre-feet. Should pumping reach potentially higher levels an overdraft is expected. Effect of ground water withdrawals are established from projections of the flow regime within the alluvial aquifer. A time dependent, numerical model was employed to predict aquifer response to increased withdrawals. The results suggest that more efficient use of surface waters and/or increased use of ground water will reduce the annual subsurface return flow to the North Platte River and its tributaries by an amount equal to the reduced ground water recharge increment. Alternatives are available for management of the lower North Platte alluvial aquifer. The preferred course is to correlate surface and subsurface water rights, in light of convenience, economics, and best means of storage for maximum utilization of the single water resource.  相似文献   

4.
ABSTRACT: Efforts are under way to recover habitat for several threatened and endangered species in and along the Platte River in central Nebraska. A proposed recovery program for these species requires a means of characterizing “wet” versus “normal” versus “dry” hydrologic conditions in order to set corresponding Platte River instream flow targets. Methods of characterizing hydrologic conditions in real time were investigated for this purpose. Initially, 10 watershed variables were identified as potentially valuable indicators of hydrologic conditions. Ultimately, six multiple linear regression equations were developed for six periods of the year using a subset of these variables expressed as frequencies of nonexceedence. The adequacy of these equations for characterizing conditions was assessed by evaluating their historic correlation to subsequent flow in the central Platte River (1947–1994). These equations explained 54 to 82 percent of variability in the observed flow exceedences in the validation datasets, depending upon the period of year evaluated. These equations will provide initial criteria for setting applicable flow targets to determine, in real time, whether water regulation projects associated with the species recovery effort can divert or store flows without conflicting with recovery objectives.  相似文献   

5.
ABSTRACT: The environmental setting of the Red River of the North basin within the United States is diverse in ways that could significantly control the areal distribution and flow of water and, therefore, the distribution and concentration of constituents that affect water quality. Continental glaciers shaped a landscape of very flat lake plains near the center of the basin, and gently rolling uplands, lakes, and wetlands along the basin margins. The fertile, black, fine-grained soils and landscape are conducive to agriculture. Productive cropland covers 66 percent of the land area. The principal crops are wheat, barley, soybeans, sunflowers, corn, and hay. Pasture, forests, open water, and wetlands comprise most of the remaining land area. About one-third of the 1990 population (511,000) lives in the cities of Fargo and Grand Forks, North Dakota and Moorhead, Minnesota. The climate of the Red River of the North basin is continental and ranges from dry subhumid in the western part of the basin to subhumid in the eastern part. From its origin, the Red River of the North meanders northward for 394 miles to the Canadian border, a path that is nearly double the straight-line distance. The Red River of the North normally receives over 75 percent of its annual flow from the eastern tributaries as a result of regional patterns of precipitation, evapotranspiration, soils, and topography. Most runoff occurs in spring and early summer as a result of rains falling on melting snow or heavy rains falling on saturated soils. Lakes, prairie potholes, and wetlands are abundant in most physiographic areas outside of the Red River Valley Lake Plain. Dams, drainage ditches, and wetlands alter the residence time of water, thereby affecting the amount of sediment, biota, and dissolved constituents carried by the water. Ground water available to wells, streams, and springs primarily comes from sand and gravel aquifers near land surface or buried within 100 to 300 feet of glacial drift that mantles the entire Red River of the North basin. Water moves through the system of bedrock and glacial-drift aquifers in a regional flow system generally toward the Red River of the North and in complex local flow systems controlled by local topography. Many of the bedrock and glacial-drift aquifers are hydraulically connected to streams in the region. The total water use in 1990, about 196 million gallons per day, was mostly for public supply and irrigation. Slightly more than one half of the water used comes from ground-water sources compared to surface-water sources. Most municipalities obtain their water from ground-water sources. However, the largest cities (Fargo, Grand Forks and Moorhead) obtain most of their water from the Red River of the North. The types and relative amounts of various habitats change among the five primary ecological regions within the Red River of the North basin. Headwater tributaries are more diverse and tend to be similar to middle-reach tributaries in character rather than the lower reaches of these tributaries for the Red River of the North. Concentrations of dissolved chemical constituents in surface waters are normally low during spring runoff and after thunderstorms. The Red River of the North generally has a dissolved-solids concentration less than 600 milligrams per liter with mean values ranging from 347 milligrams per liter near the headwaters to 406 milligrams per liter at the Canadian border near Emerson, Manitoba. Calcium and magnesium are the principal cations and bicarbonate is the principal anion along most of the reach of the Red River of the North. Dissolved-solids concentrations generally are lower in the eastern tributaries than in the tributaries draining the western part of the basin. At times of low flow, when water in streams is largely from ground-water seepage, the water quality more reflects the chemistry of the glacial-drift aquifer system. Ground water in the surficial aquifers commonly is a calcium bicarbonate type with dissolved-solids concentration generally between 300 and 700 milligrams per liter. As the ground water moves down gradient, dissolved-solids concentration increases, and magnesium and sulfate are predominant ions. Water in sedimentary bedrock aquifers is predominantly sodium and chloride and is characterized by dissolved-solids concentrations in excess of 1,000 milligrams per liter. Sediment erosion by wind and water can be increased by cultivation practices and by livestock that trample streambanks. Nitrate-nitrogen concentrations also can increase locally in surficial aquifers beneath cropland that is fertilized, particularly where irrigated. Nitrogen and phosphorous in surface runoff from cropland fertilizers and nitrogen from manure can contribute nutrients to lakes, reservoirs, and streams. Some of the more persistent pesticides, such as atrazine, have been detected in the Red River of the North. Few data are available to conclusively define the presence or absence of pesticides and their break-down products in Red River of the North basin aquifers or streams. Urban runoff and treated effluent from municipalities are discharged into streams. These point discharges contain some quantity of organic compounds from storm runoff, turf-applied pesticides, and trace metals. The largest releases of treated-municipal wastes are from the population centers along the Red River of the North and its larger tributaries. Sugar-beet refining, potato processing, poultry and meat packing, and milk, cheese, and cream processing are among the major food processes from which treated wastes are released to streams, mostly in or near the Red River of the North.  相似文献   

6.
ABSTRACT: The Central Nebraska Basins (NAWQA) study unit includes the Platte River and two major tributaries, the Loup and Elkhorn Rivers. Platte River flows are variable in the western part of the study unit because of diversions, but the Loup and Elkhorn Rivers originate in an area of dune sand covered by grassland that generates consistent base flows. More frequent runoff in the eastern part of the study unit also sustains stream flow. Ground water in the study unit has no regional confining units and the system is a water table aquifer throughout. Macroinvertebrate and fish taxa at biological sampling sites in the state were related to stream flow. One of the four wetland complexes identified in the study unit includes habitat for threatened and endangered bird species. The study unit is an agricultural area that includes row crops, both irrigated and nonirrigated in the eastern and southern parts, and rangeland in the Sand Hills of the western part. A water quality assessment will be based on the differences in environmental setting in each of four subunits within the study unit.]  相似文献   

7.
ABSTRACT. As demands upon available water supplies increase, there is an accompanying increase in the need to assess the downstream consequences resulting from changes at specific locations within a hydrologic system. The problem is approached in this study by hybrid computer simulation of the hydrologic system. Modeling concepts are based upon the development of basic relationships which describe the various hydrologic processes. Within a system these relationships are linked by the continuity-of-mass principle. Spatial resolution is achieved by considering the modeled areas as a series of subbasins. The time increment adopted for the model is one month, so that time varying quantities are expressed in terms of mean monthly values. The model is general in nature and is applied to a particular hydrologic system through a programmed verification procedure whereby model coefficients are evaluated for the particular system. In this study the model is applied to the Bear River basin of western Wyoming, southern Idaho, and northern Utah. Comparisons between observed and computed outflow hydrographs show good agreement. The utility of the model is demonstrated by predicting the effects of various possible water resource management alternatives. The verified hybrid computer program can be digitized for application to the digital computer.  相似文献   

8.
ABSTRACT: Geochemistry of fine-fraction streambed sediments collected from the upper illinois River basin was surveyed in the fall of 1987 as part of the U.S. Geological Survey National Water-Quality Assessment pilot projects. The survey included 567 samples analyzed for 46 elements. Three distinctive distribution patterns were found for seven U.S. Environmental Protection Agency priority pollutants surveyed, as well as for boron and phosphorus: (1) enrichment of elements in the Chicago urban area and in streams draining the urban area relative to rural areas, (2) enrichment in main stems relative to tributaries, and (3) enrichment in low-order streams at high-population-density sites relative to low-population-density sites. Significant differences in background concentrations, as measured by samples from low-order streams, were observed among five subbasins in the study area. Uncertain geochemical correspondence between low-order, background sites and high-order, generally metal enriched sites prevented determination of background levels that would be appropriate for high-order sites. The within-sample ratio of enriched elements was variable within the Chicago area but was constant in the Illinois River downstream from Chicago. Element ratios imply a composite fine-fraction sediment in the Illinois River of 35–40 percent Des Plaines River origin and 60–65 percent Kankakee River origin.  相似文献   

9.
The South Saskatchewan River Basin is one of Canada's most threatened watersheds, with water supplies in most subbasins over‐allocated. In 2013, stakeholders representing irrigation districts, the environment, and municipalities collaborated with researchers and consultants to explore opportunities to improve the resiliency of the management of the Oldman and South Saskatchewan River subbasins. Streamflow scenarios for 2025‐2054 were constructed by the novel approach of regressing historical river flows against indices of large‐scale ocean‐atmosphere climate oscillations to derive statistical streamflow models, which were then run using projected climate indices from global climate models. The impacts of some of the most extreme scenarios were simulated using the hydrologic mass‐balance model Operational Analysis and Simulation of Integrated Systems (OASIS). Based on stakeholder observations, the project participants proposed and evaluated potential risk management and adaption strategies, e.g., modifying existing infrastructure, building new infrastructure, changing operations to supplement environmental flows, reducing demand, and sharing supply. The OASIS model was applied interactively at live modeling sessions with stakeholders to explore practical adaptation strategies. Our results, which serve as recommendations for policy makers, showed that forecast‐based rationing together with new expanded storage could dramatically reduce water shortages.  相似文献   

10.
The South Saskatchewan River Basin (SSRB) of Alberta, Canada, is semiarid and under severe water stress due to increasing human demands. We present the first examination of projected changes in SSRB runoff from a large set of North American Regional Climate Change Assessment Program regional climate models (RCMs) plus one Coordinated Regional Climate Downscaling Experiment RCM. We used six different runoff estimation methods: total surface and subsurface runoff (total runoff), surface runoff, and four estimations based on Budyko functions. Most RCM estimations showed substantial biases and distribution differences when compared to observed data; thus bias correction was necessary. Total runoff was the best of the six variables in modeling observed runoff for each of the four SSRB subbasins. Projected total runoff for 2041–2070 shows a geographic gradient in the SSRB, with possible drying in the southern Oldman River subbasin and possible increased runoff in the northernmost Red Deer River subbasin. A shift to an earlier spring peak in runoff and drier late summer, with a need for increased irrigation, should be expected. In a first examination of the important question of projected changes in interannual variability, we show increasing magnitude. This result further adds to adaptation challenges over the course of this century in this basin, which is already largely closed to further allocation.  相似文献   

11.
The Platte River Basin consists of tributaries largely in Wyoming, Colorado and Western Nebraska, with the main stem in Central Nebraska. Critical wildlife habitat on the main stem requires additional in-stream flows. The watershed is one hosting multiple resources, a variety of users, and managed by an array of state and federal agencies. This study proposes a basis for securing in-stream flows for the Platte River. Candidate water supply mechanisms are suggested based on the way in which Casper, Wyoming secured water for its municipal needs. Canal lining is compared to a dam project, increasing reservoir storage, and purchasing water rights, with consideration also made for water pricing to reduce municipal use. Comparisons are based on economic efficiency, potential water conservation, and property rights criteria. Canal lining, coupled with demand management, is shown to conserve water best, given the set of efficiency and cost criteria for in-stream flow enhancement. The approach offers an opportunity to organize the water supply choice context in a transboundary watershed when quantitative information is limited.  相似文献   

12.
Land-use change, dominated by an increase in urban/impervious areas, has a significant impact on water resources. This includes impacts on nonpoint source (NPS) pollution, which is the leading cause of degraded water quality in the United States. Traditional hydrologic models focus on estimating peak discharges and NPS pollution from high-magnitude, episodic storms and successfully address short-term, local-scale surface water management issues. However, runoff from small, low-frequency storms dominates long-term hydrologic impacts, and existing hydrologic models are usually of limited use in assessing the long-term impacts of land-use change. A long-term hydrologic impact assessment (L-THIA) model has been developed using the curve number (CN) method. Long-term climatic records are used in combination with soils and land-use information to calculate average annual runoff and NPS pollution at a watershed scale. The model is linked to a geographic information system (GIS) for convenient generation and management of model input and output data, and advanced visualization of model results. The L-THIA/NPS GIS model was applied to the Little Eagle Creek (LEC) watershed near Indianapolis, Indiana, USA. Historical land-use scenarios for 1973, 1984, and 1991 were analyzed to track land-use change in the watershed and to assess impacts on annual average runoff and NPS pollution from the watershed and its five subbasins. For the entire watershed between 1973 and 1991, an 18% increase in urban or impervious areas resulted in an estimated 80% increase in annual average runoff volume and estimated increases of more than 50% in annual average loads for lead, copper, and zinc. Estimated nutrient (nitrogen and phosphorus) loads decreased by 15% mainly because of loss of agricultural areas. The L-THIA/NPS GIS model is a powerful tool for identifying environmentally sensitive areas in terms of NPS pollution potential and for evaluating alternative land use scenarios for NPS pollution management.  相似文献   

13.
ABSTRACT: Decision parameters affecting combined use of effluent discharges and surface flows and ground water available at Gillespie Dam on the Gila River in Arizona are identified and analyzed. Hydrologic, economic, legal, and institutional parameters are considered separately and in combination. The interrelationships of irrigation subsystems, water use functions, institutional involvement, economic and legal constraints are illustrated. Recent hydrologic studies indicate that the natural flow of the Gila River will increase with the discharge of Phoenix sewage effluent and then there will be a drastic decline when the Palo Verde Nuclear Generating Station commences in 1985. Competition for any increases in effluent discharges and surface flows could be ameliorated through the combined efforts of existing or reorganized entities resulting in sharing of costs and benefits. The analysis leads to recommendations concerning joint use of facilities, proration of fixed and variable costs, and creation of a mutual water company.  相似文献   

14.
ABSTRACT: An investigation to determine the relation between stream water quality and geohydrology in the Roberts Creek watershed, Clayton County, Iowa, was conducted during selected base-flow periods in 1988–90. Discharge measurements were made and water samples collected for analyses of nutrients and selected herbicides in 19 subbasins along the main stem and tributaries of Roberts Creek. The areal extent of unconsolidated and bedrock units subcropping in each subbasin was quantified. The hydrologic data were correlated statistically with the geologic data to determine relations. Roberts Creek generally gained water and had larger nitrogen concentrations in subbasins in which bess and alluvial material were underlain primarily by low-permeability till and shale units. Roberts Creek generally lost water and had lower nitrate concentrations in subbasins with subcroppmg karstic units. Nitrogen concentrations decreased in streams underlain by the karstic units because the nitrogen removed by biological processes was not replaced by ground-water inflow. Seepage from Roberts Creek to ground water in areas of subcropping karstic carbonate rocks reduced the flow, which reduced the velocity, causing increased residence time of water in the stream. The additional residence time may allow additional time for biological processes to remove nitrogen from solution. There was no significant relation between dissolved orthophosphate or atrazine and the underlying geology.  相似文献   

15.
The watershed of the Neuse River, a major tributary of the largest lagoonal estuary on the U.S. mainland, has sustained rapid growth of human and swine populations. This study integrated a decade of available land cover and water quality data to examine relationships between land use changes and surface water quality. Geographic Information Systems (GIS) analysis was used to characterize 26 subbasins throughout the watershed for changes in land use during 1992–2001, considering urban, agricultural (cropland, animal as pasture, and densities of confined animal feed operations [CAFOs]), forested, grassland, and wetland categories and numbers of wastewater treatment plants (WWTPs). GIS was also used together with longitudinal regression analysis to identify specific land use characteristics that influenced surface water quality. Total phosphorus concentrations were significantly higher during summer in subbasins with high densities of WWTPs and CAFOs. Nitrate was significantly higher during winter in subbasins with high numbers of WWTPs, and organic nitrogen was higher in subbasins with higher agricultural coverage, especially with high coverage of pastures fertilized with animal manure. Ammonium concentrations were elevated after high precipitation. Overall, wastewater discharges in the upper, increasingly urbanized Neuse basin and intensive swine agriculture in the lower basin have been the highest contributors of nitrogen and phosphorus to receiving surface waters. Although nonpoint sources have been emphasized in the eutrophication of rivers and estuaries such as the Neuse, point sources continue to be major nutrient contributors in watersheds sustaining increasing human population growth. The described correlation and regression analyses represent a rapid, reliable method to relate land use patterns to water quality, and they can be adapted to watersheds in any region.  相似文献   

16.
ABSTRACT: Parts of the Raritan River basin in central New Jersey have undergone increasing development over the last several decades. The increasing population relies on the region's ground water and surface water sources for its residential, commercial, and industrial water supply. Urbanization, regionalized wastewater-treatment facilities, stream channel alterations, and interbasin transfers of water can all affect water availability. This pilot study was conducted to determine whether significant trends exist in the base-flow and overland-runoff characteristics of streams in two subbasins with different percentages of urban/built-up land (Anderson et at., 1976). Changes in flow characteristics that could indicate future reductions in safe water yield of the Raritan River basin were examined. Flow and flow variability of the steams draining these two subbasins have increased over time. Many of the flow measures studied experienced pronounced trend shifts about 1960. The cause of these changes cannot be readily determined from the data, nor is it clear whether the increased flow variability lies outside the natural range of flow variability of the streams draining the subbasins.  相似文献   

17.
Land and water resource development can independently eliminate riparian plant communities, including Fremont cottonwood forest (CF), a major contributor to ecosystem structure and functioning in semiarid portions of the American Southwest. We tested whether floodplain development was linked to river regulation in the Upper Colorado River Basin (UCRB) by relating the extent of five developed land-cover categories as well as CF and other natural vegetation to catchment reservoir capacity, changes in total annual and annual peak discharge, and overall level of mainstem hydrologic alteration (small, moderate, or large) in 26 fourth-order subbasins. We also asked whether CF appeared to be in jeopardy at a regional level. We classified 51% of the 57,000 ha of alluvial floodplain examined along >2600 km of mainstem rivers as CF and 36% as developed. The proportion developed was unrelated to the level of mainstem hydrologic alteration. The proportion classified as CF was also independent of the level of hydrologic alteration, a result we attribute to confounding effects from development, the presence of time lags, and contrasting effects from flow alteration in different subbasins. Most CF (68% by area) had a sparse canopy (50% canopy cover occupied <1% of the floodplain in 15 subbasins. We suggest that CF extent in the UCRB will decline markedly in the future, when the old trees on floodplains now disconnected from the river die and large areas change from CF to non-CF categories. Attention at a basinwide scale to the multiple factors affecting cottonwood patch dynamics is needed to assure conservation of these riparian forests.  相似文献   

18.
Salinity, selenium, and uranium pose water‐quality challenges for the Arkansas River in southeastern Colorado and other rivers that support irrigation in semiarid regions. This study used 31 years of continuous discharge and specific conductance (SC) monitoring data to assess interannual patterns in water quality using mass balance on a 120‐km reach of river. Discrete sampling data were used to link the SC records to salinity, selenium, and uranium. Several important patterns emerged. Consumptive use reduced discharge by a median value of 33% and drove corresponding increases in salinity and uranium concentrations. Increased water availability for irrigation from rainfall and upstream snowpack in 1995–1999 flushed additional salinity and uranium into the river in 1996–2000; average annual total dissolved solids (salinity) concentrations increased 25%, and loads increased 131%. Smaller flushing events have occurred, sometimes lagging an increase in water availability by about one year. The pattern indicates flushing of salts temporarily stored, evaporatively concentrated, or of geologic origin. Mobilization of selenium from the reach was minor compared to salinity and uranium, and net selenium removal from the river was suggested in some years. Several processes related to irrigation could be removing selenium. The results provide context for efforts to improve water quality in the Arkansas River and rivers in other semiarid regions.  相似文献   

19.
Brown, Juliane B., Lori A. Sprague, and Jean A. Dupree, 2011. Nutrient Sources and Transport in the Missouri River Basin, With Emphasis on the Effects of Irrigation and Reservoirs. Journal of the American Water Resources Association (JAWRA) 47(5):1034‐1060. DOI: 10.1111/j.1752‐1688.2011.00584.x Abstract: SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.  相似文献   

20.
ABSTRACT: In current hydrologic practice flood frequency estimates are usually based upon either the annual or the partial duration series of floods. Recurrence intervals generated by each series are not equivalent, however, and conversion of recurrence intervals from one series to the other is usually achieved by reference to a mathematical function developed by Langbein in 1949. Data collected on the Murrumbidgee River in New South Wales suggest, however, that the Langbein conversion function does not always provide a reliable means of comparing recurrence intervals. For discharges more frequent than the three year annual flood the Langbein function understates the discrepancy between the two sets of recurrence interval by approximately 35 percent. Langbein's own North American data appear to be consistent with those collected on the Murrumbidgee River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号