首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
AESTRACT An evaluation of the Maxey-Eakin method for calculating recharge to ground-water basins in Nevada was performed. The evaluation consisted of comparing Maxey-Eakin estimates with independent estimates of recharge, and analyzing the nature of the differences between the groups of estimates. In the comparison with the Maxey-Eakin estimates, two different groups of independent estimates were used: (1) 40 recharge estimates that were identified from water budgets contained in reports by the Nevada Department of Conservation and Natural Resources and (2) 27 recharge estimates that were identified from previous studies that used models. The results of the comparisons indicate generally good agreement between the Maxey-Eakin estimates and both groups of independent estimates. To quantify this agreement, an analysis was conducted to estimate the uncertainty in the Maxey-Eakin method. The analysis produced an upper bound on the standard deviation of the Maxey-Eakin estimate for a given basin. For the group of 40 water-budget estimates, the upper bound on the standard deviation for an individual basin is 4,800 acre-ft/yr, and the corresponding coefficient of variation of the Maxey-Eakin estimate is no greater than 44 percent. For the group of 27 model estimates, the upper bound on the standard deviation is 4,100 acre-ft/yr, and the corresponding coefficient of variation is no greater than 24 percent.  相似文献   

2.
ABSTRACT: As part of a larger model to identify lands suitable for acquisition, a water supply protection model was developed using the Southwest Florida Water Management District's GIS. Several hydrologic and hydrogeologic data layers were overlaid to develop maps showing ground-water supply suitability, protection areas for surface-water supply, protection areas for major public supply wells, susceptibility to ground-water contamination, and recharge to the Floridan aquifer. These intermediate layers were combined into a final map to prioritize protection areas for water supply.  相似文献   

3.
ABSTRACT: Volusia County, in east central Florida, comprises approximately 1,200 square miles situated between the St. Johns River and the Atlantic Ocean. Most of the County is underlain by a three-aquifer system. Population centers in Volusia County, which create a large water demand, are located near the coast. Saltwater intrusion into the ground water near these population centers has led to relocation of public water supply wells further inland. Regional management of the county's water resources commissioned construction of a three-dimensional computer model of the county. Predevelopment simulation results were used as initial conditions for the development simulations, which included well discharge data. The predevelopment model calibration consisted of reproducing field-determined potentiometric surfaces. As part of the calibration process, sensitivity analyses were performed on boundary conditions, recharge rates, permeability, and leakage properties. Results of the model study indicate the utility of computer models as a management tool for the complex ground-water system in Volusia County.  相似文献   

4.
ABSTRACT: The evolution of ground-water law in eight states in the Midwest (Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin) is examined, and a review of transitions in ground-water doctrines is presented. Two underlying themes in changing ground-water management are communicated. First, ground-water law is evolving from private property rules of capture based on the absolute ownership doctrines to rules requiring conservation and sharing of ground water as a public resource. Second, in both courts and state legislatures, a proactive role of ground-water management is emerging, again, with an emphasis on sharing. Both of these trends are apparent in the Midwest. In the last decade midwestern states have (1) seen significant shifts in court decisions on ground-water use with greater recognition of the reciprocal or mutually dependent nature of ground-water rights, and (2) seen increased legislative development of comprehensive ground-water management statutes that emphasize the reciprocal liabilities of ground-water use. These trends are examined and ground-water management programs discussed for eight states in the Midwest.  相似文献   

5.
ABSTRACT: Soil-water conditions provide valuable insight into the hydrologic system in an area. A soil-water balance quantitatively summarizes soil-water conditions and is based on climatic, soil, and vegetation characteristics that vary spatially and temporally. Soil-water balances in the Great Plains of the central United States were simulated for 1951–1980. Results of the simulations were mean annual estimates of infiltration, runoff, actual evapotranspiration, potential recharge, and consumptive water and irrigation requirements at 152 climatic data stations. A method was developed using a geographic information system to integrate and map the simulation results on the basis of spatially variable climatic, soil, and vegetation characteristics. As an example, simulated mean annual potential recharge was mapped. Mean annual potential-recharge rates ranged from less than 0.5 inch in much of the north-central and southwestern Great Plains to more than 10 inches in parts of eastern Texas and southwestern Arkansas.  相似文献   

6.
ABSTRACT Sinkholes and subsidence in areas subject to dewatering of carbonate formations have been documented in several geologic and hydrologic investigations. Excessive ground-water pumpage has been cited as a causative factor in areas of increased sinkhole activity. Subsurface erosion of unconsolidated materials underlain by carbonate rocks is one cause of the collapses. Infiltrating water from retention basins may cause subsurface erosion and eventual failure by collapse of the structure. The resulting ground-water contamination would be great as the pollutants spread throughout the solution-cavity system.  相似文献   

7.
ABSTRACT: The Rio Grande Valley National Water-Quality Assessment study unit encompasses about 45,700 square miles in Colorado, New Mexico, and Texas upstream from the gaging station Rio Grande at El Paso, Texas, and includes surface-water closed basins east of the Continental Divide in New Mexico, and the San Luis Closed Basin in Colorado. The mean annual precipitation ranges from less than 6 to more than 50 inches; potential evapo-transpiration ranges from less than 35 to more than 80 inches per year. Land use is mainly rangeland, forest land, and cropland. Total irrigated acreage in 1990 was about 914,000 acres and water use was about 3,410,000 acre-feet. Two structural settings are found in the study unit: alluvial basins and bedrock basins. The alluvial basins can have through-flowing surface water or be closed basins. The discussion of streamflow and water quality for the surface-water system is based on four river reaches for the 750 miles of the main stem. The quality of the ground water is affected by both natural process and human activities and by nonpoint and point sources. Nonpoint sources for surface water include agriculture, hydromodification, and mining operations; point sources are mainly discharge from wastewater treatment plants. Nonpoint sources for ground water include agriculture and septic tanks and cesspools; point sources include leaking underground storage tanks, unlined or manure-lined holding ponds used for disposal of dairy wastes, landfills, and mining operations.  相似文献   

8.
ABSTRACT: The chemical impact of urban runoff water on water quality beneath five retention/recharge basins was investigated as part of the US EPA's Nationwide Urban Runoff Program in Fresno, California. Soil water percolating through alluvium soils and the ground water at the top of the water table were sampled with ceramic/Teflon vacuum water extractors at depths up to 26 m during the two-year investigation. Inorganic and organic pollutants are present in the runoff water delivered to the basins. No significant contamination of percolating soil water or ground water underlying any of the five retention/recharge basins has occurred for constituents monitored in the study. The oldest basins was constructed in 1962. The concentration of selected trace elements in the ground water samples was similar to the levels reported in the regional ground water. None of the pesticides or other organic priority pollutants, for which water samples were analyzed, was s̊ detected except diazinon which was found in trace amounts (0.3 μg/L or less) in only three soil water samples. These results are important to the continued conservation of storm water and the development of a best management practice for storm-water management using retention/recharge basins in a semi-arid climate.  相似文献   

9.
ABSTRACT. Stream channel characteristics were found to be useful indices to the hydrology of 27 small forested basins in the Northeast United States. Channel width alone explained 37 percent of the variation in mean annual runoff, whereas channel width combined with basin area explained 78 percent of the variation in mean annual runoff. This approached the percentage of variation in mean annual runoff explained by mean annual precipitation (83 percent). A simulated 15% increase in precipitation, such as might occur in a weather modification project, produced increases in channel width, depth, and channel area of 3, 4, and 8 percent, respectively.  相似文献   

10.
ABSTRACT: Ground water is intended to be administered in many western states as a flow or renewable resource. In Idaho, this administration is based on the appropriation doctrine of water rights. Two generalizations may be made concerning ground water. First, water artificially discharged from an aquifer system must deplete the total resource by that amount; water consumptively pumped from a well must be derived from either increased recharge, decreased discharge or a decrease of water in storage. Second, the annual rate of recharge to a ground-water system is often only a small percentage of the total resource in storage. Ground water may be divided into flow and stock portions. In those basins where the second generalization is true, most ground water may be classified as stock. However, only the flow portion of ground water may be developed if utilization of the resource is to be enjoyed over an infinite period. Data from the Raft River Basin in Idaho indicate that the flow and stock characteristics of ground water are time dependent. The resource exhibits the characteristics of both a renewable and nonrenewable resource. As a result, present administrative techniques do not provide for effective management of the resource.  相似文献   

11.
ABSTRACT: Average-annual volumes of runoff, evapotranspiration, channel loss, upland (interchannel) recharge, and total recharge were estimated for watersheds of 53 channel sites in the Amargosa River basin above Shoshone, California. Estimates were based on a water-balance approach combining field techniques for determining streamflow with distributed-parameter simulation models to calculate transmission losses of ephemeral streamflow and upland recharge resulting from high-magnitude, low-frequency precipitation events. Application of the water-balance models to the Amargosa River basin, Nevada and California, including part of the Nevada Test Site, suggests that about 20.5 million cubic meters of water recharges the ground-water reservoir above Shoshone annually. About 1.6 percent of precipitation becomes recharge basinwide. About 90 percent of the recharge is by transmission loss in channels, and the remainder occurs when infrequent storms yield sufficient precipitation that soil water percolates beyond the rooting zone and reaches the zone of saturation from interchannel areas. Highest rates of recharge are in headwaters of the Amargosa River and Fortymile Wash; the least recharge occurs in areas of relatively low precipitation in the lowermost Amargosa River watershed.  相似文献   

12.
ABSTRACT: This paper describes the formulation and application of a ground-water hydraulic management model to determine the optimal development and operating policies of a regional aquifer in the Eastern Province of Saudi Arabia. The hydraulic response of the aquifer system is represented by a simulation model that is linked to an optimization management model using response functions. Yearly optimal ground-water extraction rates over a planning horizon of 15 years are determined for four scenarios, each reflecting alternative ground-water development policies. The results are presented in the form of tradeoff curves, relating drawdowns to optimal pumpage, which may enhance the decisionmaker's ability to select the best development policy from a set of alternatives. The results illustrate how various optimal management schemes can be devised to increase the total withdrawal from the aquifer while preventing excessive de-watering.  相似文献   

13.
ABSTRACT: A monthly water‐balance (WB) model was tested in 44 river basins from diverse physiographic and climatic regions across the conterminous United States (U.S.). The WB model includes the concepts of climatic water supply and climatic water demand, seasonality in climatic water supply and demand, and soil‐moisture storage. Exhaustive search techniques were employed to determine the optimal set of precipitation and temperature stations, and the optimal set of WB model parameters to use for each basin. It was found that the WB model worked best for basins with: (1) a mean elevation less than 450 meters or greater than 2000 meters, and/or (2) monthly runoff that is greater than 5 millimeters (mm) more than 80 percent of the time. In a separate analysis, a multiple linear regression (MLR) was computed using the adjusted R‐square values obtained by comparing measured and estimated monthly runoff of the original 44 river basins as the dependent variable, and combinations of various independent variables [streamflow gauge latitude, longitude, and elevation; basin area, the long‐term mean and standard deviation of annual precipitation; temperature and runoff; and low‐flow statistics (i.e., the percentage of months with monthly runoff that is less than 5 mm)]. Results from the MLR study showed that the reliability of a WB model for application in a specific region can be estimated from mean basin elevation and the percentage of months with gauged runoff less than 5 mm. The MLR equations were subsequently used to estimate adjusted R‐square values for 1,646 gauging stations across the conterminous U.S. Results of this study indicate that WB models can be used reliably to estimate monthly runoff in the eastern U.S., mountainous areas of the western U.S., and the Pacific Northwest. Applications of monthly WB models in the central U.S. can lead to uncertain estimates of runoff.  相似文献   

14.
ABSTRACT: Field experiments were conducted from 1992 to 1995 to estimate ground water recharge rates at two sites located within a 2.7‐hectare agricultural field. The field lies in a sand plain setting in central Minnesota and is cropped continuously in field corn. The sites are located at a topographically high (upland) site and a topographically low (lowland) site in an effort to quantify the effects of depression focusing of recharge. Three site‐specific methods were used to estimate recharge rates: well hydrograph analysis, chlorofluorocarbon age dating, and an unsaturated zone water balance. All three recharge methods indicated that recharge rates at the lowland site (annual average of all methods of 29 cm) exceeded those at the upland site (annual average of 18 cm). On an annual basis, estimates by the individual methods ranged from 12 to 44 percent of precipitation at the upland site and from 21 to 83 percent at the lowland site. The difference in recharge rates between the sites is primarily attributed to depression focusing of surface water runon at the lowland site. However, two other factors were also important: the presence of thin lamellae at the upland site, and coarser textured soils below a depth of 1.5 m at the lowland site.  相似文献   

15.
ABSTRACT: The U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model, commonly called MODFLOW, has been modified so that it can read and write files used by a geographic information system (GIS). The modified model program is called MODFLOWARC. The design of MODFLOWARC parallels the design of the ground-water flow model program MODFLOW. The names of the variables, modules, and submodules used to explain the operations of MODFLOWARC were derived from the names used in MODFLOW. During the data input phase, MODFLOWARC reads array control records similar to the original control records of MODFLOW, except an additional variable is added. This additional variable is the name of the computer files containing array data in GIS format. Data output is achieved by setting record/input flags and by supplying a variable that is the name of the directory where the output data will be recorded. The modifications to MODFLOW were minimized so that MODFLOWARC will operate on an existing ground-water flow model without modifying array control records.  相似文献   

16.
The Las Vegas, Nevada area like most semi-arid basins, was developed through exploitation of available ground-water resources. Area growth in this large valley has occurred in a scattered and sporadic manner with development both in incorporated areas and within the County. As a result, today there exist five major water suppliers which are: a water district, three municipalities, and a large corporation, in addition to numerous small water companies and thousands of domestic wells. In the past 20 years the area has grown from a population of less than 50,000 to over 300,000 today. The bulk of the water demand for this growth has been met from the ground-water resource and as a result the basin is being severely mined. Current extractions are over three times the estimated annual replenishment. Rapidly declining water levels are increasing the costs of water and are creating water shortages during periods of peak demand. To meet both the current and anticipated water demands, the Southern Nevada Water Supply Project is being constructed to import additional water from nearby Lake Mead. Agriculture in the area is very limited, and primarily uses reclaimed waste water for irrigation. The chief water demands in the area are thus municipal and industrial, with the former predominating. This study was designed to determine how best the Las Vegas Valley Water District, supplier of 80 percent of the domestic water, might integrate the use of the existing ground water and anticipated imported surface water. Additionally the consequences of application of certain provisions in the Nevada Water Law were examined to determine their effects on the ground-water system and costs of water. To achieve these objectives, a dynamic programming technique was utilized. The problem as formulated consists of a single decision variable, single state variable dynamic programming algorithm evaluated over a fifty-year planning horizon at monthly intervals. Three alternative solutions, with different ground-water law constraints are evaluated. In all solutions certain basic operating rules regarding ground-water pumping distribution and use of surface-water systems are kept constant. The problem is considered as deterministic in all respects. Recharge to ground water is assumed to equal the estimated average annual replenishment evenly distributed over the year and additionally is not considered to be a function of average basin ground water potential. The only surface supply, Lake Mead, is considered to operate at near constant elevation and not be subject to shortage conditions. In light of the size of Lake Mead, the Colorado River flow and the size of Nevada's allotment, 300,000 ac ft, the latter assumption is reasonable. Demand for water is considered as a known function of time. Optimization of conjunctive use for the Water District is based on the objective function of minimizing water production costs. Costs of distributing water are considered to be constant regardless of source, and so are not included. Also, fixed costs of amortizing the pipeline project and well fields are not considered. Results of the study are presented as a series of policy traces under each of the three alternatives considered. These traces describe the ground-water basin response under optimal operating conditions, given an estimate as to the present worth of ground-water pumping rights, and prescribe monthly water-procurement schedules for the operation of the Water District.  相似文献   

17.
Stephens, Daniel B., Mark Miller, Stephanie J. Moore, Todd Umstot, and Deborah J. Salvato, 2011. Decentralized Groundwater Recharge Systems Using Roofwater and Stormwater Runoff. Journal of the American Water Resources Association (JAWRA) 48(1): 134‐144. DOI: 10.1111/j.1752‐1688.2011.00600.x Abstract: Stormwater capture for groundwater recharge in urban areas is usually conducted at the regional level by water agencies. Field and modeling studies in New Mexico indicate that stormwater diverted to retention basins may recharge about 50% of precipitation that falls on the developed area, even in dry climates. Comparable volumes of recharge may be expected at homes, subdivisions, or commercial properties with low‐impact development (LID) technologies for stormwater control that promote recharge over evapotranspiration. Groundwater quality has not been significantly impacted at sites that have been recharging stormwater to aquifers for decades. Distributed recharge systems may be a good alternative to centralized regional facilities where there is limited land for constructing spreading basins or little funding for new infrastructure. LID technologies borrowed from stormwater managers are important tools for groundwater managers to consider to enhance recharge.  相似文献   

18.
ABSTRACT: To better understand the flow processes, solute-trans. port processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of mass in the ephemeral middle subreaches, and (2) ground-water recharge does not explain the loss of mass in the perennial uppermost and lowermost subreaches. The observed tracer curves in the perennial subreaches were indicative of sorptive dye losses, transient storage, and (or) photodecay - these phenomena were simulated using a linear decay term. However, analysis of the linear decay terms indicated that photodecay was not a dominant source of dye loss.  相似文献   

19.
From 1971-1980, studies were conducted at Fresno, California, to identify and quantify, where possible, the soil and water chemistry, subsurface geologic, hydrologic, biologic, and operational factors that determine the long term (10-year) effectiveness of basin type artificial ground water recharge through alluvial soils. This paper updates previous findings and refers to publications that describe the geology beneath the basins and regional geology that determine the transmission and storage properties for local ground water management and chemical quality enhancement. High quality irrigation water from the Kings River was used for recharge. Construction and land costs for the present expanded facility 83 ha (205.2 ac) using three parcels of land were $1,457,100. The nine-year annual mean costs for only canal water, maintenance, and operation were $110.42/ha·m ($13.62/ac·ft) based on an average recharge rate of 1338 ha·m/yr (10,848 ac·ft/yr) at 86 percent facility efficiency. The measured end of season recharge rate averaged 14.97 ± 0.24 cm/day. The 10-year mean actual recharge rate based on actual water delivered, total ponded area, and total days of recharge was 12.1 cm/day.  相似文献   

20.
Coastal subsystems formed by interaction of various processes, impacted by natural hazards like tsunami and storms, pose irreversible morphological changes. Vellar estuary, located on the southeast coast of India, with huge sand dunes (of 3-6m height and spread to 560ha) and barrier islands, has undergone extensive morphological changes due to the giant Indian Ocean tsunami that occurred on 26th December 2004. The damage caused by the tsunami has been quantified using extensive field data collected during pre- and post-tsunami periods through Real Time Kinematic GPS (for mapping coastal features and beach profiles) and Geographic Information System (GIS) couple. The tsunami with a wave height as high as 4m not only inundated the entire coastal land up to a maximum of 2km but also eroded the sand dunes and deposited the eroded material at the inlet, which ultimately formed as a vast tidal flat spread over 31ha. The estuary has suffered immensely due to the tsunami especially in terms of (i) loss of natural protection barriers (sand dunes), which made this coastal area more vulnerable to storm attack, and (ii) shallowness of inlet creating hindrance to navigation of fishing vessels. Based on the observations made at Vellar coast and past recovery experiences of tsunami/hurricanes elsewhere in the world, we contend that the morphological loss might take at least two annual cycles to regain its original form and the rebuilding of sand dunes may even take a decade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号