首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Many models of selection predict that populations will lose variation in traits that affect fitness. Nonetheless, phenotypic variation is commonly observed in natural populations. We tested the influences of competition and spatial heterogeneity on behavioral variation within and among populations of Merriam's kangaroo rats (Dipodomys merriami) and tested for the differential expression of trait correlations. We found that populations of D. merriami exhibited more aggression at sites with more competition. Contrary to theoretical predictions and empirical results in other systems, the sites with the greatest spatial heterogeneity and highest levels of competition did not exhibit the most behavioral variation among individuals. However, the greatest within-individual behavioral variability in boldness (response to cues of predator presence) was exhibited where spatial heterogeneity was highest. Aggression and boldness of D. merriami were highly repeatable, that is, individuals behaved in a consistent manner over time, and the two behaviors were also highly correlated. Interestingly, the strength of this correlation was greatest where the competitive community was least diverse. These findings add to increasing evidence that natural populations of animals exhibit patterns of behavioral covariance, or personality structure, and suggest that competitive variation may act to erode personality structure.  相似文献   

2.
Dominance relationships in solitary species may be an important factor in the maintenance of long-term, stable relationships among territorial neighbors. We examined the mediation of intraspecific interactions in a solitary, territorial kangaroo rat, Dipodomys heermanni, and tested whether unfamiliar kangaroo rats establish a dominance hierarchy and then decrease aggression and increase communication (via footdrumming and sandbathing) after initial interactions and the establishment of a social structure. Results revealed that both dominance hierarchies and familiarization with particular individuals are likely to mediate social interactions. After only one pairing per dyad, an almost linear dominance hierarchy emerged, which became perfectly linear after a 90-min familiarization period. During the course of subsequent interactions between dyad partners, fighting decreased and non-agonistic communication increased. Dominant kangaroo rats sandbathed at higher rates than subordinates, possibly to deposit scent to advertise competitive ability, whereas subordinate kangaroo rats footdrummed from inside the burrow, which seemed to indicate an unwillingness to interact. We suggest the kangaroo rats use a conditional strategy when deciding to fight (be dominant) or withdraw (be subordinate) by employing different modes to communicate status and minimize the potential risk of injury during unnecessarily prolonged fights.  相似文献   

3.
We examined habitat use by the endangered Stephens' kangaroo rat ( Dipodomys stephensi) in different seasons and assessed whether this may be influenced by a sympatric congener, the Pacific kangaroo rat (Dipodomys agilis). Trapping on three plots over 2 years revealed these species were rarely captured at the same trap stations. Spatial segregation was highly significant when both species were at high density. The spatial distribution of these species was temporally stable where both species were relatively abundant, but where D. agilis was relatively uncommon the distribution of D. stephensi varied from one census to another. The abundance of three microhabitats (grass, debris, and bare ground) followed a regular seasonal pattern of variation that was consistent across 2 years of substantially different rainfall. A canonical discriminant analysis showed that the five quantified microhabitats (those above and bush and rock cover) provided highly significant discrimination between the trap stations occupied by the two species. Dipodomys stephensi was associated with trap stations where grass cover and bare ground were abundant but where bush and rock were uncommon. Dipodomys agilis was associated with stations that had large amounts of bare ground and average abundances of bush and rock cover. The spatial segregation of these species appears to be mediated by habitat preferences; D. stephensi prefers grassland and D. agilis prefers sage scrub. This suggests that habitat management for D. stephensi should include (1) controlling the spread of shrubs into grassland and (2) creating dispersal corridors of open habitat to link areas of suitable habitat where none presently exist. Each of these options may be needed to maintain viable populations in all reserves designated for the conservation of D. stephensi.  相似文献   

4.
Summary Footdrumming and visual displays associated with territorial defense in the bannertail kangaroo rat (Dipodomys spectabilis) were studied in the field in Arizona. We predicted that foot-drumming functioned like bird song in territorial advertisement. Rats were tested in their territories for their responses to the presentation of four different stimuli: a playback of airborne footdrumming patterns (audio); a stuffed and mounted kangaroo rat in an aggressive posture (visual); a combination of both (audio-visual); and a playback of cricket stridulation as a control. Kangaroo rats investigated all experimental stimuli equally by becoming alert, approaching, and retreating (Fig. 2). Rats, therefore, seemed to assess the amount of threat and footdrummed at higher rates and sooner in response to the more threatening visual stumulus of a stuffed rat than to the apparently less threatening ones of a airborne footdrumming playback or cricket stridulation (Fig. 1). We conclude that rats footdrum at long ranges to repel a potential intruder and also at close ranges when territories are threatened by a persistent intruder. Chase and attack, as in territorial birds, are the final lines of defense.  相似文献   

5.
Summary Anti-predator behaviors of the bannertail kangaroo rat (Dipodomys spectabilis) toward snake predators were investigated. We induced responses by presenting a live (tethered) snake and an inflatable snake decoy to rats of known ages and sex in their territories. Comparisons of behaviors during spontaneous activity (baseline), naturally occurring snake-rat interactions, and experimental procedures further clarified anti-predator behaviors. The tethered snake immediately induced high rates of footdrumming (the repeated striking of the hind feet on the ground) in all rats (n=24) (Table 2), and individuals of both sexes and all ages footdrummed significantly more at the tethered snake than at the decoy. Other antipredator behaviors included alert postures, jumpback, kicking sand and avoidance. Juvenile rats exhibited more avoidance behavior and alert postures than adults and footdrummed at the decoy only if they experienced the snake first. We conclude that footdrumming functions as an individual alarm signal against predation by snakes in D. spectabilis. The drumming probably informs a snake that it has been detected and may cause it to leave. Because rats did not footdrum in response to aerial predators (owls), we suggest that kangaroo rats use different anti-predator strategies that depend on the kind of threat and the type of predator.  相似文献   

6.
Effective conservation of endangered species often is hampered by inadequate knowledge of demography. We extracted information on survival and fecundity from an 18-month, live-trapping study of Dipodomys stephensi , and from this we developed an age-structured demographic model to assess population viability. Adult Stephens' kangaroo rats persisted longer than juveniles, and adult females persisted longer than adult males. Disappearance rates were high in the first months after initial capture. Thereafter, the fraction of animals persisting decreased slowly and in an approximately linear fashion on a semilogarithmic scale, suggesting age-independent mortality factors such as predation. Juvenile persistence did not differ substantially between two years of strikingly different rainfall. Onset of breeding followed the start of winter rains. Length of the breeding season, average number of litters per female, and the fraction of first-year females breeding were much greater in the year of higher rainfall. We propose a birth-pulse demographic model for D. stephensi that distinguishes juvenile and adult age classes. Temporal environmental variation can be modeled adequately with a constant survivorship schedule and variable fecundity determined by yearly precipitation. Several issues should be resolved, however, before conservation decisions are based on the model. Better estimates of juvenile survivorship are critical, the quantitative relationship between precipitation and fecundity must be determined, and the potential for density dependence and source-sink population dynamics must be evaluated.  相似文献   

7.
Translocation is used to reestablish wild populations of animals, but translocation projects often do not meet their objectives because postrelease mortality of animals is high. One reason for translocation failure is that the behavioral or ecological requirements of released animals are unmet. Maintaining founder-group social relationships during release can affect reestablishment of social species. Solitary territorial species with stable neighbors (restricted dispersal and lifetime occupation of a home range) of the same species may also benefit from the maintenance of these social relationships during translocation. We translocated Stephens' kangaroo rats (Dipodomys stephensi), a solitary species listed as endangered under the U.S. Endangered Species Act, with and without neighboring kangaroo rats. We compared the settlement (establishment of a stable home range) decisions and fitness of kangaroo rats between the 2 treatments. Kangaroo rats translocated with neighbors traveled shorter distances before establishing territories, had higher survival rates, and had significantly higher reproductive success than kangaroo rats translocated without neighbors. Number of offspring was 24-fold higher for kangaroo rats translocated with neighbors than those translocated without neighbors. Differences in behavior following release may partially explain differences in survival between the 2 groups. Immediately following release, animals translocated with neighbors fought less and spent significantly more time foraging and digging burrows than animals translocated without neighbors. Our results indicate that even for solitary species, maintaining relationships among members of a translocated group of animals can influence translocation success. This study is the first empirical demonstration of the fitness consequences of disrupting social relationships among territorial neighbors.  相似文献   

8.
Population sinks present unique conservation challenges. The loss of individuals in sinks can compromise persistence; but conversely, sinks can improve viability by improving connectivity and facilitating the recolonization of vacant sources. To assess the contribution of sinks to regional population persistence of declining populations, we simulated source–sink dynamics for 3 very different endangered species: Black‐capped Vireos (Vireo atricapilla) at Fort Hood, Texas, Ord's kangaroo rats (Dipodomys ordii) in Alberta, and Northern Spotted Owls (Strix occidentalis caurina) in the northwestern United States. We used empirical data from these case studies to parameterize spatially explicit individual‐based models. We then used the models to quantify population abundance and persistence with and without long‐term sinks. The contributions of sink habitats varied widely. Sinks were detrimental, particularly when they functioned as strong sinks with few emigrants in declining populations (e.g., Alberta's Ord's kangaroo rat) and benign in robust populations (e.g., Black‐capped Vireos) when Brown‐headed Cowbird (Molothrus ater) parasitism was controlled. Sinks, including ecological traps, were also crucial in delaying declines when there were few sources (e.g., in Black‐capped Vireo populations with no Cowbird control). Sink contributions were also nuanced. For example, sinks that supported large, variable populations were subject to greater extinction risk (e.g., Northern Spotted Owls). In each of our case studies, new context‐dependent sinks emerged, underscoring the dynamic nature of sources and sinks and the need for frequent re‐assessment. Our results imply that management actions based on assumptions that sink habitats are generally harmful or helpful risk undermining conservation efforts for declining populations.  相似文献   

9.
Summary Behaviors associated with territorial defense of large dirt mounds by bannertail kangaroo rats (Dipodomys spectabilis) at high and low population densities are reported. Rats were observed for 640 h during three summers and one spring from 1980–1982 in SE Arizona.Bannertail kangaroo rats defended their territories by footdrumming, as a long-distance warning signal, and chasing as a closer-distance threat. They footdrummed on or near their mounds spontaneosly during the night, in response to neighbors' footdrums, and durint mound challenges. There were no sexual differences in footdrumming, and juveniles frequently performed the behavior. The low frequency sounds were within the auditory sensitivities of the rats and footdrumming patterns differed somewhat between individuals. A playback experiment provided preliminary evidence that rats can differentiate between the footdrums of neighbors and strangers. When a bannertail visited the mound of another bannertail the mound owner actively defended its mound and immediately chased the visitor away. Fighting and mound challenges occurred infrequently, and the uniformly dispersed distribution of mounds suggested an effort by rats to avoid mutual interference.When population densities were high, dispersing juveniles built new mounds, consequently, distances between mounds decreased. Rats responded by tolerating closer neighbors, spending more time active on their mounds, and visiting neighboring mounds less. Adults increased footdrumming rates at high population densities, but juveniles footdrummed at high rates regardless of the population size.  相似文献   

10.
Patch use as an indicator of habitat preference,predation risk,and competition   总被引:34,自引:0,他引:34  
Summary A technique for using patch giving up densities to investigate habitat preferences, predation risk, and interspecific competitive relationships is theoretically analyzed and empirically investigated. Giving up densities, the density of resources within a patch at which an individual ceases foraging, provide considerably more information than simply the amount of resources harvested. The giving up density of a forager, which is behaving optimally, should correspond to a harvest rate that just balances the metabolic costs of foraging, the predation cost of foraging, and the missed opportunity cost of not engaging in alternative activities. In addition, changes in giving up densities in response to climatic factors, predation risk, and missed opportunities can be used to test the model and to examine the consistency of the foragers' behavior. The technique was applied to a community of four Arizonan granivorous rodents (Perognathus amplus, Dipodomys merriami, Ammospermophilus harrisii, and Spermophilus tereticaudus). Aluminum trays filled with 3 grams of millet seeds mixed into 3 liters of sifted soil provided resource patches. The seeds remaining following a night or day of foraging were used to determine the giving up density, and footprints in the sifted sand indicated the identity of the forager. Giving up densities consistently differed in response to forager species, microhabitat (bush versus open), data, and station. The data also provide useful information regarding the relative foraging efficiencies and microhabitat preferences of the coexisting rodent species.  相似文献   

11.
Kangaroo rats, Dipodomys, occupy desert habitats with little cover and thus are under high predation risk from diverse predators. The behavior used to assess predation risk or to escape capture is unknown. We therefore compared anti-predator behavior of two sympatric species of kangaroo rat of different sizes, D. merriami and D. spectabilis. We first examined whether kangaroo rats use olfaction as a first line of defense against snake predation and tested the rats for their responses to scent extracted from two species of snake that live sympatrically with the kangaroo rats, the Mojave rattlesnake (Crotalus scutulatus) and the gopher snake (Pitophis melanoleucus). We also tested for species differences in anti-predator behavior through 15-min interactions between the kangaroo rats and free-moving gopher snakes. We found that D. spectabilis actively approached the scent of both rattlesnakes and gopher snakes more than controls of vegetable oil and evaporated solvent (Fig. 1). In contrast, D. merriami did not differentiate snake odors from controls in the experimental arena, but they sniffed the sand where a free-moving snake had passed more than D. spectabilis. Both species successfully avoided predation in encounters with live snakes. Although total numbers of approaches and withdrawals were similar (Fig. 2), D. spectabilis spent significantly more time within striking distance of the snake than D. merriami. D. spectabilis approached the head of the snake in 93% of its approaches and often engaged in nose to snout contact with the snake. If the snake struck, D. spectabilis jumped directly backward to avoid a strike and footdrummed at a safe distance. In contrast, D. merriami oriented to the snake more than D. spectabilis, but approached the head in only 41% of the approaches and rarely engaged in nose-to-snout contact. The snakes struck, hissed and decreased predatory approaches with D. spectabilis but not with D. merriami (Fig. 3). These results show that kangaroo rats can behaviorally influence the risk of being preyed on by snakes. The two species differ, however, in how they react to snakes. The larger D. spectabilis confronts snakes while the smaller D. merriami monitors snakes from a safe distance and avoids them.  相似文献   

12.
《Ecological modelling》2005,186(3):299-311
Decision tree, one of the data mining methods, has been widely used as a modelling approach and has shown better predictive ability than traditional approaches (e.g. regression). However, very little is known from the literature about how the decision tree performs in predicting pasture productivity. In this study, decision tree models were developed to investigate and predict the annual and seasonal productivity of naturalised hill-pasture in the North Island, New Zealand, and were compared with regression models with respect to model fit, validation and predictive accuracy. The results indicated that the decision tree models for annual and seasonal pasture productivity all had a smaller average squared error (ASE) and a higher percentage of correctly predicted cases than the corresponding regression models. The decision tree model for annual pasture productivity had an ASE which was only half of that of the regression model, and correctly predicted 90% of the cases in the model validation which was 10.8 percentage points higher than that of the regression model. Furthermore, the decision tree models for annual and seasonal pasture productivity also clearly revealed the relative importance of environmental and management variables in influencing pasture productivity, and the interaction among these variables. Spring rainfall was the most significant factor influencing annual pasture productivity, while hill slope was the most significant factor influencing spring and winter pasture productivity, and annual P fertiliser input and autumn rainfall were the most significant factors influencing summer and autumn pasture productivity. One limitation of using the decision tree to predict pasture productivity was that it did not generate a continuous prediction, and thus could not detect the influence of small changes in environmental and management variables on pasture productivity.  相似文献   

13.
Natal dispersal is an important event in the life history of many species. Timing of natal dispersal can influence survivorship and subsequent reproductive success. A variety of individual proximal factors determine if and when offspring disperse from the natal territory by influencing the costs of dispersing and the benefits of delaying dispersal. I examined the influence of multiple factors on dispersal age in the banner-tailed kangaroo rat (Dipodomys spectabilis), a solitary species lacking extreme sex-biased dispersal. I used an information theoretic approach to compare Cox proportional hazards regression models of dispersal age for 121 offspring over a 3-year period consisting of low and high population densities. The top-ranked models indicated that dispersal age was influenced by a combination of socioecological factors related to resource competition, environmental conditions, kin competition, and a lesser extent sex. Circumstances that likely reduced the probability of successful dispersal such as intense resource competition at high population density and being born earlier in the breeding season when environmental conditions were poor lead to longer delays in natal dispersal. Offspring in larger litters also dispersed earlier possibly to avoid competition with kin. Sex was weakly supported in top models but may only influence dispersal age at high population densities. These results suggest that the proximal factors that trigger dispersal are influenced by a combination of multiple effects related to the costs of dispersing and the benefits of remaining at home, even in species that do not form long-term social groups or have extreme sex-biased dispersal.  相似文献   

14.
Mating strategies of a nocturnal,desert rodent (Dipodomys spectabilis)   总被引:1,自引:0,他引:1  
Summary The mating system of a nocturnal, desert rodent, the banner-tailed kangaroo rat (Dipodomys spectabilis) was studied through direct observation, live-trapping, and radiotelemetry over a 13-month period from August 1986 to August 1987. Mating behavior varied from exclusive matings between male and female neighbors to competitive mate searching and direct male competition. In summer matings and early in a November to May breeding season, males located receptive females and mated exclusively with them without disturbance from other males. As the operational sex ratio changed in favor of males, multiple males converged on an estrous female's territory and competed for access to her. However, an older, experienced male usually monopolized the matings of the same one to two close female neighbors for the entire breeding period, and females mated with the same male neighbor over several estrous cycles. Monopolization of females by neighbor males was facilitated by female relaxation of individual territorial defense. Dominant males spent considerable time in the territories of the females they monopolized before and during mating. This relaxation in territorial defense was seen in dyadic encounters in which females tolerated all males but allowed significantly more contact by neighbor than stranger males. Neighbor recognition, therefore, seems important in coordinating the mating interactions of this solitary rodent.  相似文献   

15.
Natal philopatry in bannertailed kangaroo rats   总被引:1,自引:0,他引:1  
Summary I describe prolonged retention of offspring in natal home ranges, or natal philopatry, in the bannertailed kangaroo rat Dipodomys spectabilis. Though weaning occurs at about one month of age, offspring shared natal burrows with their mothers for three to seven months, and 39% of surviving offspring remained within natal home ranges through reproductive maturity. Males as well as females were philopatric. Data on the availability of burrows and on patterns of resettlement suggest that natal philopatry in this species may be a means of providing juveniles with access to essential resources, in this case food caches and large complex burrow systems, that are not readily available outside natal home ranges.  相似文献   

16.
Knape J  de Valpine P 《Ecology》2012,93(2):256-263
We show how a recent framework combining Markov chain Monte Carlo (MCMC) with particle filters (PFMCMC) may be used to estimate population state-space models. With the purpose of utilizing the strengths of each method, PFMCMC explores hidden states by particle filters, while process and observation parameters are estimated using an MCMC algorithm. PFMCMC is exemplified by analyzing time series data on a red kangaroo (Macropus rufus) population in New South Wales, Australia, using MCMC over model parameters based on an adaptive Metropolis-Hastings algorithm. We fit three population models to these data; a density-dependent logistic diffusion model with environmental variance, an unregulated stochastic exponential growth model, and a random-walk model. Bayes factors and posterior model probabilities show that there is little support for density dependence and that the random-walk model is the most parsimonious model. The particle filter Metropolis-Hastings algorithm is a brute-force method that may be used to fit a range of complex population models. Implementation is straightforward and less involved than standard MCMC for many models, and marginal densities for model selection can be obtained with little additional effort. The cost is mainly computational, resulting in long running times that may be improved by parallelizing the algorithm.  相似文献   

17.
Summary Parental exclusion analyses based on allozyme data were performed on 105 families of cliff swallows (Hirundo pyrrhonota) from southwestern Nebraska, USA. The protein products of seve polymorphic loci were resolved from blood, and at least one parental exclusion occurred at six of these loci. One or both putative parents were excluded for 35 nestlings from 22 different families. The mean number of non-kin nestlings in these families was 1.59. Non-kin nestlings were found in families with brood sizes ranging from two to five. A greater percentage of families in an 1100-nest colony had non-kin offspring than in two smaller colonics, although the difference was not statistically significant. Application of genetic models to these data and the observed distribution of parental exclusions suggested that multiple parentage in cliff swallows results more often from intraspecific brood parasitism than from forced extra-pair copulations. Based on the calculated probabilities of detecting non-kin, we estimate that 23.7% of all nestlings in our population are not the offspring of one or both of their putative parents. We estimate that about 43% of all cliff swallow nests in Nebraska contain at least one offspring resulting from intraspecific brood parasitism, and that about 6% of nests might contain offspring resulting from extra-pair copulations.  相似文献   

18.
Post DM  Palkovacs EP  Schielke EG  Dodson SI 《Ecology》2008,89(7):2019-2032
Intraspecific phenotypic variation in ecologically important traits is widespread and important for evolutionary processes, but its effects on community and ecosystem processes are poorly understood. We use life history differences among populations of alewives, Alosa pseudoharengus, to test the effects of intraspecific phenotypic variation in a predator on pelagic zooplankton community structure and the strength of cascading trophic interactions. We focus on the effects of differences in (1) the duration of residence in fresh water (either seasonal or year-round) and (2) differences in foraging morphology, both of which may strongly influence interactions between alewives and their prey. We measured zooplankton community structure, algal biomass, and spring total phosphorus in lakes that contained landlocked, anadromous, or no alewives. Both the duration of residence and the intraspecific variation in foraging morphology strongly influenced zooplankton community structure. Lakes with landlocked alewives had small-bodied zooplankton year-round, and lakes with no alewives had large-bodied zooplankton year-round. In contrast, zooplankton communities in lakes with anadromous alewives cycled between large-bodied zooplankton in the winter and spring and small-bodied zooplankton in the summer. In summer, differences in feeding morphology of alewives caused zooplankton biomass to be lower and body size to be smaller in lakes with anadromous alewives than in lakes with landlocked alewives. Furthermore, intraspecific variation altered the strength of the trophic cascade caused by alewives. Our results demonstrate that intraspecific phenotypic variation of predators can regulate community structure and ecosystem processes by modifying the form and strength of complex trophic interactions.  相似文献   

19.
The relative contribution of in situ reproduction versus immigration to the recruitment process is important to ecologists. Here we consider a robust design superpopulation capture-recapture model for a population with two age classes augmented with population assignment data. We first use age information to estimate the entry probabilities of new animals originating via in situ reproduction and immigration separately for all except the first period. Then we combine age and population assignment information with the capture-recapture model, which enables us to estimate the entry probability of in situ births and the entry probability of immigrants separately for all sampling periods. Further, this augmentation of age specific capture-recapture data with population assignment data greatly improves the estimators’ precision. We apply our new model to a capture-recapture data set with genetic information for banner-tailed kangaroo rats in Southern Arizona. We find that many more individuals are born in situ than are immigrants for all time periods. Young animals have lower survival probabilities than adults born in situ. Adult animals born in situ have higher survival probabilities than adults that were immigrants.  相似文献   

20.
Permeability of Roads to Movement of Scrubland Lizards and Small Mammals   总被引:2,自引:0,他引:2  
A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife‐vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low‐use dirt, low‐use secondary paved, and rural 2‐lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange‐throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low‐use paved road of similar width or onto the highway, indicating they avoid paved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2‐lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2‐lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low‐use roads, but roads with heavy traffic may deter movement of a much wider range of small animal species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号