首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomonitoring organophosphate (OP) exposure in marine environments is generally achieved by the measurement of acetylcholinesterase activity in bivalves like mussels. However, there is evidence that indicates that oxidative stress may be implied in OP toxicity. The aim of this study was to evaluate the relationship between survival from the OP insecticide fenitrothion and glutathione levels in marine bivalves. Mussels (Mytilus galloprovincialis Lam.) and scallops (Flexopecten flexuosus Poli) were exposed, in a time to death test, to their LC85 of fenitrothion for 96 h. OP-poisoned mussels showed reduced (GSH) and oxidised (GSSG) glutathione depletion in the digestive gland, muscle and gills. Pectinid spats exposed to this insecticide presented GSH depletion in the digestive gland and mantle, and a reduction of the GSH/GSSG ratio in gills and mantle. Although survival curves were significantly different and mussels withstood twice as much fenitrothion as pectinid spats, muscular GSH/GSSG ratio was highly related to mortality in both species. We suggest that an impairment in the glutathione redox status could result in an induction of the cell death, either by apoptosis or necrosis, leading ultimately to the death of the organism. We conclude that whereas glutathione depletion can be used as a biomarker of exposure, the muscular GSH/GSSG ratio might be used as a biochemical marker of effect and individual susceptibility to mortality of marine bivalves exposed to fenitrothion or other pollutants that induce oxidative stress.  相似文献   

2.
Wang L  Yan B  Liu N  Li Y  Wang Q 《Chemosphere》2008,74(1):51-56
Cadmium (Cd) is one of the most deleterious heavy metals in aquatic systems that could promote oxidative damage. To explore the effects of Cd exposure of a freshwater crab (Sinopotamon yangtsekiense) on hepatopancreatic glutathione (GSH) synthesis, crabs were exposed to the reagent with a dose range of 7.25-116.00 mg L(-1) for 48 h. The concentrations of GSH, oxidized glutathione (GSSG), NADPH and NADP(+), as well as the activities of enzymes involved in GSH synthesis, i.e. glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PD), gamma-glutamylcysteine synthetase (gamma-GCS) were determined. Progressive depletion of cellular GSH content was observed with the increasing of Cd concentrations, while the level of GSSG remained constant. In response to Cd exposure, crabs showed significant induction of G6PD and NADPH, however, only up to moderate exposures. GR activity remained at a steady level at all exposure concentrations. The activity of gamma-GCS was significantly positively correlated with the Cd concentration. These results suggested that GSH synthesis could be activated against reactive oxygen species induced by lower Cd exposure; under the higher Cd exposure conditions, an inhibition of NADPH-dependant redox cycling and de novo GSH synthesis led to significant decrease in GSH content.  相似文献   

3.
Zhang J  Shen H  Wang X  Wu J  Xue Y 《Chemosphere》2004,55(2):167-174
There were few reports on the antioxidant response of aquatic organisms exposed to 2,4-dichlorophenol (2,4-DCP). This research explored the hepatic antioxidant responses of fish to long-term exposure of 2,4-DCP for the first time. Freshwater fish Carassius auratus were chosen as experimental animals. The fish were exposed to six different concentrations of 2,4-DCP (0.005-1.0 mg/l) for 40 days and then liver tissues were separated for determination. As shown from the results, 40 days afterwards, the activities of catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) and the content of oxidized glutathione (GSSG) were induced significantly on the whole compared to control group; superoxide dismutase (SOD) responded to 2,4-DCP exposure at only 0.005 mg/l; the content of reduced glutathione (GSH) was suppressed continuously except Group 7; the activity of glutathione reductase was inhibited initially and then restored to control level from Group 4 on; glutathione S-transferase had only slight responses in Groups 3 and 4. Total glutathione (tGSH) and GSH/GSSG ratio were also calculated to analyze the occurrence of oxidative stress. Besides, good dose-effect relations, which cover most of the exposure concentration range, were found between 2,4-DCP level and CAT activity, GSSG content, Se-GPx activity, respectively. In conclusion, SOD and Se-GPx may be potential early biomarkers of 2,4-DCP contamination in aquatic ecosystems, and further studies will be necessary.  相似文献   

4.
Li F  Ji L  Luo Y  Oh K 《Chemosphere》2007,67(1):13-19
With Carassius auratus, one of the main economic fish species in Eastern China as test material, this paper studied the hydroxyl radical generation and oxidative stress in its liver under the effect of 2,4,6-trichlorophenol (2,4,6-TCP). Different doses of 2,4,6-TCP were injected intraperitoneally into the fishes, and the Electron paramagnetic resonance (EPR) spectra of hepatic free radicals, activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-s-transferase (GST), levels of reduced glutathione (GSH) and oxidized glutathione (GSSG), and malondialdehyde (MDA) contents were determined 24h after injection. The results showed that under the effects of 2,4,6-TCP, the generation of free radical that was considered to be hydroxyl radical increased significantly, the activities of antioxidant enzymes decreased, with CAT most strongly affected and followed by SOD and GST, the GSH level decreased significantly while GSSG level had little difference, resulting in a decreased GSH/GSSG ratio, and the MDA content increased significantly. All the test parameters showed that C. auratus was subjected to oxidative stress and damage when exposed to 2,4,6-TCP.  相似文献   

5.
The present study aimed to establish the seasonal variations in the redox potential ranges of young Tibouchina pulchra plants growing in the Cubatão region (SE Brazil) under varying levels of oxidative stress caused by air pollutants. The plants were exposed to filtered air (FA) and non-filtered air (NFA) in open-top chambers installed next to an oil refinery in Cubatão during six exposure periods of 90 days each, which included the winter and summer seasons. After exposure, several analyses were performed, including the foliar concentrations of ascorbic acid and glutathione in its reduced (AsA and GSH), total (totAA and totG) and oxidized forms (DHA and GSSG); their ratios (AsA/totAA and GSH/totG); the enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR); and the content of malondialdehyde (MDA). The range of antioxidant responses in T. pulchra plants varied seasonally and was stimulated by high or low air pollutant concentrations and/or air temperatures. Glutathione and APX were primarily responsible for increasing plant tolerance to oxidative stress originating from air pollution in the region. The high or low air temperatures mainly affected enzymatic activity. The content of MDA increased in response to increasing ozone concentration, thus indicating that the pro-oxidant/antioxidant balance may not have been reached.  相似文献   

6.
Eels of species Anguilla anguilla were exposed to 5/4 LC50 (41.8 mg/l) of the herbicide molinate for 96 h in a time to death (TTD) test. Glutathione content (GSx, GSH, GSSG), glutathione reductase (GR) and gamma-glutamyl transpeptidase (gamma-GT) activities were determined in the liver and muscle tissues of dead and surviving (intoxicated) animals and compared to control values (non-exposed eels). TTD was positively correlated to hepatic GSH, GSH:GSSG ratio, hepatic and muscular GR, but negatively correlated to muscular GSH, which was severely depleted. Furthermore, glutathione and enzyme activities were intercorrelated, especially GSH and GR. These results indicate that eels which were able to induce GR activity, increase GSH and maintain the GSH:GSSG ratio in the liver showed an extended survival under the oxidative stress generated by molinate than those that lost glutathione homeostasis.  相似文献   

7.
Gravato C  Teles M  Oliveira M  Santos MA 《Chemosphere》2006,65(10):1821-1830
Fish are exposed in the aquatic ecosystems to different classes of pollutants. Polycyclic aromatic hydrocarbons (PAHs) and heavy metals represent two important classes of aquatic contaminants. Thus, one lot of European eels (Anguilla anguilla L.) was pre-exposed during 24 h to 2.7 microM beta-naphthoflavone (BNF; a PAH-like compound), and subsequently exposed during 24 h to 0, 1 and 2.5 microM copper (Cu). Additionally, another lot not pre-exposed to BNF was exposed to the same Cu concentrations. BNF pre-exposure promoted a significant increase in liver ethoxyresorufin O-deethylase (EROD) activity, but did not change the other responses investigated in eels. On the other hand, both Cu concentrations did not modify the liver EROD activity either in eels pre-exposed to BNF or not. Liver total cytochrome P450 was increased in eels exposed to Cu 2.5 microM, being significantly only in eels not pre-exposed to BNF. Free sulfhydryl group content was decreased by 1 and 2.5 microM in eels pre-exposed to BNF or not pre-exposed, being significant at 2.5 microM Cu in eels not pre-exposed compared to its control. Liver total glutathione (TG), reduced glutathione (GSH) and GSH/oxidized glutathione (GSSG) levels were slightly decreased by 1 and 2.5 microM Cu in eels pre-exposed to BNF, whereas a slight tendency to increase was observed in eels not pre-exposed. Thus, liver TG and GSH significantly decreased in 2.5 microM Cu BNF pre-exposed eels compared to eels not pre-exposed to BNF. Liver glutathione reductase and catalase activities were significantly inhibited by 1 and 2.5 microM Cu in eels pre-exposed to BNF, concomitantly with a slight liver glutathione peroxidase tendency to decrease. Lipid peroxidation was significantly increased by 1 microM Cu in eels either pre-exposed or not pre-exposed to BNF. Liver H(2)O(2) was significantly increased by 1 microM Cu in eels pre-exposed to BNF. Liver DNA integrity was significantly decreased by 1 and 2.5 microM Cu in eels pre-exposed to BNF. The oxidative stress and genotoxic effects induced by Cu in eels pre-exposed to BNF revealed that the metal effects are potentiated by previous exposure to BNF.  相似文献   

8.
9.
The biochemical response to chronic heavy metal exposure was studied in tissues of bank voles Clethrionomys glareolus. Animals were collected from three sites located 4, 8 and 30km from a zinc-lead smelter, the area's main source of metal contamination. Concentrations of Cd, Pb, Zn and Fe were measured in the liver, kidneys and gonads to assess the level of metal intoxication. In response to intoxication, organisms activate detoxification mechanisms which can protect animals from metals' toxicity. Glutathione plays an important role in toxic substance detoxification. Total glutathione (tGSH) and glutathione disulfide (GSSG) were measured in the tissues. Also, the activity of glutathione reductase (GR), glutathione peroxidase (GPX), and glutathione-S-transferase (GST) was measured in the studied tissues. Results indicate that levels of all studied parameters were tissue and site-dependent. Evidence indicates that the most sensitive parameter of metal toxicity for animals living in a chronically contaminated environment is the GSH/GSSG ratio. In our study, the GSH/GSSG ratio was decreased in the liver of animals with high Cd levels. However, the relationship between Pb and the GSH/GSSG ratio was positive in the gonads. Cadmium and lead negatively influenced GPX activity in the liver; this was probably connected with inhibition of the Se-dependent fraction. The relationship between iron and GR activity in the kidney was also negative, but other correlations for iron both in liver and kidney were not significant. Positive correlations between Zn levels and GST and GR activity were found in the gonads of bank voles.  相似文献   

10.
Song SB  Xu Y  Zhou BS 《Chemosphere》2006,65(4):699-706
Hexachlorobenzene (HCB)-induced oxidative damages have been published in rats while the effects have not yet been reported in fishes. Juvenile common carps (Cyprinus carpio) were exposed to waterborne HCB from 2 to 200 microg l-1 for 5, 10 or 20 days. Liver and brain were analyzed for various parameters of oxidative stress. There were no significant changes of glutathione (GSH) content and superoxide dismutase (SOD) activity in liver after 5 or 10 days exposure, whereas obvious drops were observed at higher concentrations after 20 days exposure. Significant decreases of GSH content and SOD activity in brain were found during all the exposure days. In brain, HCB also significantly elevated the contents of reactive oxygen species (ROS), thiobarbituric acid- reactive substances (TBARS, as an indicator of lipid peroxidation products), glutathione disulfide (GSSG), and activities of nitric oxide synthase (NOS), glutathione peroxidase (GPx), and glutathione reductase (GR), and inhibited activities of acetylcholinesterase (AchE) and glutathione S-transferase (GST). The results clearly demonstrated that environmentally possible level of HCB could result in oxidative stress in fish and brain was a sensitive target organ of HCB toxicity.  相似文献   

11.
We have presented changes in the photosynthetic apparatus activity of Arabidopsis thaliana plants occurring within 15-144 h of 100 microM Cu or Cd action with regard to jasmonate (JA) as well as expression of the oxidative stress and non-enzymic defense mechanisms. The inhibitory effect of both heavy metals related to developing dissipative processes and lipid peroxide formation was expressed in dark-adapted state after the longest time as a decrease in potential quantum yield of PSII. In dark- and light-adapted state the heavy metals affected the enzymic phase of photosynthesis already from the 15th hour, which was related to the lipid peroxide formation. Photochemical quenching decrease was induced after 48th hour and did not show a close correlation with the JA pathway. Blockade of endogenously formed JA by propyl gallate decreased the effect of Cu and Cd on both the whole photosynthetic apparatus starting from the 48th hour and on the primary photochemistry of PSII after 144 h. In the case of Cu the effect was related to a lipid peroxidation decrease and to an increase in glutathione and phytochelatin (PC) levels, but in the case of Cd to lipid peroxidation, O.2- and especially to PCs increase. The obtained results indicated that JA after the longest time might enhance the sensitivity of A. thaliana to Cu and Cd stress. Asc enhanced toxic action of Cu and Cd after 15 h, but after a longer time it diminished the influence of Cd (but not Cu) on photosynthetic activity.  相似文献   

12.
Wu H  Zhang R  Liu J  Guo Y  Ma E 《Chemosphere》2011,83(4):599-604
The study was undertaken to evaluate the effects of malathion and chlorpyrifos on acetylcholinesterase (AChE), esterase (EST) activity and antioxidant system after topical application with different concentration to Oxya chinensis. The results showed that malathion and chlorpyrifos inhibited EST, AChE activity and increased malondialdehyde (MDA) contents. A change in superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR) activity combined with reduced glutathione (GSH) and total glutathione (tGSH) contents was found in O. chinensis after malathion and chlorpyrifos treatments. Malathion and chlorpyrifos increased SOD and CAT activity compared with the control. With the concentrations increasing, SOD and CAT activity showed the similar tendency, namely, SOD and CAT activity increased at the lower concentrations and decreased at the higher concentrations. The results showed that malathion and chlorpyrifos decreased significantly GR activity. GST and GPx activity at the studied concentrations of chlorpyrifos was lower than that of the control. However, no significance was observed. GPx and GST activity in malathion treated grasshoppers showed a biphasic response with an initial increase followed by a decline in its activity. Malathion and chlorpyrifos decreased GSH contents and the ratio of GSH/GSSG. The present findings indicated that the toxicity of malathion and chlorpyrifos might be associated with oxidative stress.  相似文献   

13.
Levels of glutathione, in both reduced and oxidized form, and glutathione reductase activity were monitored in needles of healthy and damaged spruce trees (Picea abies (L.) Karst.) during the course of four vegetation periods at two natural sites. The glutathione content and glutathione reductase activity showed a pronounced annual rhythm in undamaged trees, whereas damaged spruce trees deviated significantly from this course. In comparison with undamaged trees, damaged trees showed markedly increased levels of glutathione during the test period of 1989-1991. However, glutathione reductase activity differed in damaged and undamaged trees, only in 1989-1990. The ratio of reduced to oxidized glutathione (GSH/GSSG ratio) was slightly higher in damaged trees, and the highest levels were found during the winter months. In the case of damaged trees, a correlation between GSH/GSSG ratio and current ozone levels at the sites could be clearly established. The present results indicate that damaged trees suffer from increased oxidative stress, especially in the period from June to October.  相似文献   

14.
Bioaccumulation and physiological effects of mercury in Sesbania drummondii   总被引:1,自引:0,他引:1  
Israr M  Sahi S  Datta R  Sarkar D 《Chemosphere》2006,65(4):591-598
The accumulation of mercury and its effect on growth, photosynthesis and antioxidative responses were studied in Sesbania drummondii seedlings. Mercury concentration in shoots as well as in the roots increased with increasing Hg concentrations in the growth solution. The accumulation of Hg was more in roots than shoots. At 100 mg l-1 Hg concentration, shoots accumulated 998 mg Hg kg -1 dry weight (dw) while roots accumulated 41,403 mg Hg kg-1 dw. Seedlings growth was not significantly affected at lower concentrations of Hg. A concentration of 100 mg l-1 Hg inhibited growth by 36.8%, with respect to control. Photosynthetic activity was assessed by measuring chlorophyll a fluorescence by determination of Fv/Fm and Fv/Fo values. Photosynthetic integrity was not affected up to 50 mg l-1 Hg concentration, however, concentrations higher than 50 mg l-1 affected photosynthetic integrity. Sesbania responded to Hg induced oxidative stress by modulating non-enzymatic antioxidants [glutathione (GSH) and non-protein thiols (NPSH)] and enzymatic antioxidants: superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR). Glutathione content and GSH/GSSG ratio increased up to a concentration of 50 mg l-1 while slight down at 100 mg l-1 Hg. The content of NPSH significantly increased with increasing Hg concentrations in the growth medium. The activities of antioxidative enzymes, SOD, APX and GR followed the same trends as antioxidants first increased up to a concentration of 50 mg l-1 Hg and then slight decreased. The results of present study suggest that Sesbania plants were able to accumulate and tolerate Hg induced stress using an effective antioxidative defense mechanisms.  相似文献   

15.
Dong J  Wu F  Zhang G 《Chemosphere》2006,64(10):1659-1666
Tomato (Lycopersicon esculentum) seedlings were grown in four cadmium (Cd) levels of 0-10 microM in a hydroponic system to analyze the antioxidative enzymes, Cd concentration in the plants, and the interaction between Cd and four microelements. The results showed that there was a significant increase in malondialdehyde (MDA) concentration, and superoxide dismutase (SOD) and peroxidase (POD) activities in the plants subjected to 1-10 microM Cd. This indicates that Cd stress induces an oxidative stress response in tomato plants, characterized by an accumulation of MDA and increase in activities of SOD and POD. Root, stem and leaf Cd concentrations increased with its exposure Cd level, and the highest Cd concentration occurred in roots, followed by leaves and stems. A concentration- and tissue-dependent response was found in the four microelement concentrations to Cd stress in the tomato leaves, stems and roots. Regression analysis showed that there was a significantly negative correlation between Cd and Mn, implying the antagonistic effect of Cd on Mn absorption and translocation. The correlation between Cd and Zn, Cu and Fe were inconsistent among leaves, stems and roots.  相似文献   

16.
17.
This study was undertaken to determine the redox balance in the developing brain after exposure to acrylamide (ACR), a potent neurotoxin. The studies were performed using an in ovo chick embryo model. The antioxidant enzymes SOD, GPx, CAT, and reduced glutathione (GSH) were used as indicators of the redox balance. Eggs were injected with ACR doses of 40 mg kg?1 egg mass (2.4 mg egg?1) on embryonic day 17 (E17). The activity of the antioxidant enzymes and the concentration of GSH were measured at E17, E18, and E19 in the medulla oblongata, cerebrum, cerebellum, and optic lobe. The results indicated a significant decrease in the GSH concentrations in the optic lobe (E19, E20) and cerebrum (E20) of embryos exposed to ACR. The activities of SOD and GPx were significantly increased in the majority of the examined structures after injection of ACR. CAT activity was completely inhibited in the brains of the embryos exposed to ACR compared to that in the brains of the control embryos. Thus, we concluded that ACR exerts a significant influence on the redox balance in the developing brain by impacting the activity of antioxidant enzymes and the levels of GSH.  相似文献   

18.
The detoxification mechanisms of the aquatic moss, Fontinalis antipyretica Hedw., exposed to Cr was analyzed. In addition, the influence of Cr salts (as Cr nitrate, chloride and potassium bichromate) on these mechanisms has also been studied. The activity of antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1.), catalase (EC 1.11.1.6.), ascorbate peroxidase (APX, EC 1.11.1.11.), guaiacol peroxidase (GPX, EC 1.11.1.7.) and glutathione reductase (GR, EC 1.6.4.2.) increased in plants treated with Cr concentrations ranging from 6.25x10(-5) to 6.25mM when given as Cr(NO(3))(3). Antioxidant enzymes responded to the other two salts CrCl(3) and K(2)Cr(2)O(7) only with Cr concentrations higher than 6.25x10(-2)mM. Glutathione level and GSSG/GSH ratio also responded to Cr exposure but no dose-effect relationship could be observed. Moreover, two unknown thiol compounds were observed in mosses exposed to the highest Cr concentrations. Effects on chlorophyll contents and chlorophyll a/b ratios were also shown even at low Cr concentrations. Our results indicated that environmentally realistic concentrations of Cr could lead to impairment of the cellular activity towards F. antipyretica and that Cr(III), when present as a nitrate salt, was as harmful as Cr(VI).  相似文献   

19.
20.
Two experiments were conducted in male SD rats (225-250 g) to determine changes in the activities of endogenous antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and concentrations of glutathione (GSH) in tissues after exposure to low doses of endosulfan and chlorpyrifos using a whole body exposure technique. In both experiments, 6 rats/group were exposed 3 hr/day, 5 days/week for 30 days to: 0 (control), 5, 10, 20, 40 and 60% of LD50 of either pesticide in 50% ethanol; actual concentrations were: endosulfan = 0, 0.5, 1.0, 2.0, 4.0, 6.0 mg/250 g body weight; chlorpyrifos = 0, 1.9, 3.8, 7.6, 15.2, and 22.8 mg/250 g body weight. Endosulfan decreased erythrocyte SOD by 21% in all groups and chlorpyrifos increased SOD by 18% in groups 40 and 60. Liver SOD was 12%-20% lower after endosulfan exposure; lung SOD was altered: endosulfan decreased activity by 21% and 51% and chlorpyrifos by 58 and 75% in the 40 and 60 groups, respectively (P < or = 0.05). Both pesticides increased plasma GPX activity at lower levels and reduced it by 26% and 19% in groups 40 and 60, respectively (P < or = 0.05). Liver GPX increased in the 60 group and lung GPX declined between 20% and 38% after endosulfan exposure. GSH in the liver and lung: endosulfan reduced GSH by about 30% at lower levels and increased by 41% or 70% at higher levels; chlorpyrifos decreased GSH by 28-40% in 20 and 60 groups, respectively (P < or = 0.05). Exposure to low, increasing levels of endosulfan and chlorpyrifos can differentially modify endogenous antioxidants SOD, GPX and GSH, which may lead to the development of oxidative stress in some tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号