首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
Summary. Metrius contractus, a primitive paussoid bombardier beetle, emits its defensive quinonoid froth with accompanying sound (a faint “hiss”), but the sound is not pulsed, indicating that the secretory emission itself is not pulsed. Pulsed secretory delivery in bombardier beetles appears to occur in Brachinini only. Received 8 July 2001; accepted 23 July 2001.  相似文献   

2.
Summary The Australian bombardier beetle,Mystropomus regularis, sprays a mixture of quinones (1,4-benzoquinone, 2-methyl-1,4-benzoquinone, 2-ethyl-1,4-benzoquinone) and hydrocarbons (principallyn-pentadecane). The defensive fluid ist generated explosively in two-chambered glands, and is ejected audibly and hot (maximal recorded temperature = 59°C).Mystropomus is a member of the paussoid lineage of bombardiers. In common with other members of the group, it has a pair of elytral flanges (flanges of Coanda), associated with the gland openings, that serve as launching guides for anteriorly-aimed ejections of spray. It is argued thatMystropomus may be the least derived of flanged paussoids, and the closest living relative of the most primitive of extant bombardiers (Metriini).Paper no. 101 of the series Defense Mechanisms of Arthropods; no. 100 is Attygalleet al. J Chem Ecol 17: 805 (1991)  相似文献   

3.
Summary. Plant responses to herbivory might directly affect the herbivore (“direct” defences) or might benefit the plant by promoting the effectiveness of natural antagonists of the herbivores (“indirect” defences). Brussels sprouts attacked by Pieris brassicae larvae release volatiles that attract a natural antagonist of the herbivores, the parasitoid Cotesia glomerata, to the damaged plant. In a previous study, we observed that feeding by caterpillars on the lower leaves of the plant triggers the systemic release of volatiles detectable by the parasitoids from upper leaves of the same plant.?The role of these systemically induced volatiles as indirect defence and the dynamics of their emission were investigated in wind-tunnel dual choice tests with C. glomerata. The systemically induced emission of volatiles varied depending on leaf age and on plant age. Systemic induction affected parasitoid effectiveness, as induced plants could be more easily located by parasitoids than non-induced ones.?The role of the systemic induction as a direct defence was investigated through behavioural and feeding tests with P. brassicae. In dual choice assays, 1st instar larvae preferred to feed and fed more on systemically induced than on non-induced leaves. In single choice assays, the leaf area consumed by caterpillars was larger on systemically induced leaves than on non-induced control leaves. However, caterpillars fed on systemically induced leaves attained the same weight as those feeding on non-induced controls. In addition, P. brassicae pupae whose larvae were fed on systemically induced leaves had longer developmental times than those of larvae fed on non-induced leaves. Adult oviposition behavior was not influenced by systemic induction.?We conclude that systemically induced responses in cabbage might reduce P. brassicae fitness both directly, by affecting their development and feeding behavior and indirectly by making caterpillars and pupae more vulnerable to attack by carnivores. The occurrence of a possible relationship between direct and indirect defence is discussed. Received 24 January 2001; accepted 3 May 2001.  相似文献   

4.
5.
Summary. For butterflies to be efficient foragers, they need to be able to recognize rewarding flowers. Flower signals such as colours and scents assist this recognition process. For plant species to attract and keep butterflies as pollinators, species-specific floral signals are crucial. The aim of this study is to investigate foraging responses to floral scents in three temperate butterfly species, Inachis io L. (Nymphalidae), Aglais urticae L. (Nymphalidae), and Gonepteryx rhamni L. (Pieridae), in behavioural choice bioassays. The butterflies were allowed to choose bet-ween flower models varying in scent and colour (mauve or green). Flowers or vegetative parts from the plants Centaurea scabiosa L. (Asteraceae), Cirsium arvense (L.) (Asteraceae), Knautia arvensis (L.) (Dipsacaceae), Buddleja davidii Franchet (Loganicaeae), Origanum vulgareL. (Lamiaceae), Achillea millefolium L. (Asteraceae), and Philadelphus coronarius L. (Hydrangiaceae) were used as scent sources. All visits to the models — those that included probing and those that did not — were counted, as was the duration of these behaviours. Both flower-naive and flower-experienced (conditioned to sugar-water rewards, the colour mauve, and specific floral scents) butterflies were tested for their preference for floral versus vegetative scents, and to floral scent versus colour. The butterflies were also tested for their ability to switch floral scent preferences in response to rewards. Flower-naive butterflies demonstrated a preference for the floral scent of the butterfly-favourable plants C. arvense and K. arvensis over the floral scent of the non-favourable plants Achillea millefolium (Asteraceae), and Philadelphus coronarius cv. (Hydrangiaceae). Most of the butterflies that were conditioned to floral scents of either C. arvense, K. arvensis, or B. davidii readily switched theirfloral scent preferences to the one most recently associated with reward, thus demonstrating that floral scent constancy is a result from learning. These findings suggest that these butterflies use floral scent as an important cue signal to initially identify and subsequently recognize and distinguish among rewarding plants. Received 2 September 2001; accepted 9 September 2002.  相似文献   

6.
Summary. A widely distributed host race of Tyria jacobaeae lives on Senecio jacobaea and related species and accumulates pyrrolizidine alkaloids (“PA race”), another race, which is restricted to the Alps and found on Petasites paradoxus, sequesters sesquiterpenes, such as petasol and isopetasol. Nucleotide sequences of the mitochondrial 16S rDNA gene show 1% sequence divergence, indicating that genetical differences exist between the PA exploiting and the terpene-sequestering host races of T. jacobaeae. This finding suggests that both host races of T. jacobaeae must have been separated for some time already, possibly since the Pleistocene. Received 2 May 2001; accepted 1 June 2001.  相似文献   

7.
Summary. Evidence is presented, obtained with two species of jays, that these birds differ in the ways in which they prepare bombardier beetles for ingestion. Blue Jays subject bombardiers to “anting,” a procedure by which the beetles are induced to eject their spray into the plumage of the birds. Florida Scrub Jays, in contrast, which live in an area where the soil is sandy, subject bombardiers to “sand-wiping,” causing the beetles to eject their spray into the substrate. Both strategies lend themselves also to pre-ingestive treatment of other chemically protected arthropods. Anting is a strategy widely practiced by birds, possibly because it can be put to use no matter what the nature of the terrain. Sand-wiping, as implied by its name (which we here coin), may be of more restricted occurrence, given that it can be carried out only on loose, penetrable soil.  相似文献   

8.
Summary. The bolas spider, Mastophora hutchinsoni, attracts Lacinipolia renigera and Tetanolita mynesalis males by mimicking the female moth sex pheromones. However, as the prey species use completely different pheromone blends we conducted experiments to determine how this is accomplished by the predator. The periodicity of L. renigera mate-seeking activities occurs early in the scotophase, whereas male T. mynesalis are active late at night, corresponding with periods when these moths are captured by the spider. The pheromone blend of early-flying L. renigera interferes with attraction of late-flying T. mynesalis to its pheromone in a dose-dependent manner, suggesting the spider must always produce a single sub-optimal “compromise” blend for both species or that it adjusts its allomonal blend to optimize capture of the respective prey species at different times during the night. We delayed (L. renigera) or advanced (T. mynesalis) the periodicity of male activity through photoperiodic manipulation and found that the bolas spider attracted both prey species outside their normal activity windows. These results support the idea that bolas spiders produce components of both species at all times rather than producing the pheromone of each prey species at different times of the night. However, using coupled gas chromatography-electroantennography, we also demonstrated that the spider decreases its emission of the L. renigera pheromone over the course of the night. This modification should reduce the behavioral antagonism of the L. renigera pheromone on T. mynesalis males and increase the predator's success of attracting T. mynesalis during this prey's normal activity window late at night. Received 13 October 2001; accepted 28 December 2001.  相似文献   

9.
Summary. Nicotine tolerance is well known for Manduca sexta. It also occurs in several other sphingids of the subfamilies Macroglossinae and Sphinginae. Only members of the subfamily Smerinthinae appear to be more susceptible to nicotine intoxication. Phylogenetic trees have been reconstructed from mitochondrial 16S rDNA and nuclear DNA to map nicotine tolerance.?The nicotine binding site of both α-subunits of nicotinic acetylcholine receptors (nAChR) have been amplified and sequenced. No apparent amino acid substitution can be seen in the putative nicotine binding site of the α-subunits of nAChR from nicotine tolerant and nicotine sensitive sphingids. Thus, a simple target-site modification can be ruled out as a cause for nicotine tolerance. This finding agrees with feeding experiments: larvae of M. sexta and other sphingids of the Macroglossinae and Sphinginae not only tolerated nicotine, but also many other alkaloids that affect neuroreceptors other than acetylcholine receptors (nAChR, mAChR).?Only 10 to 20% of nicotine injected into larvae of nicotine-tolerant taxa could be recovered later as free nicotine, nicotine N-oxide or cotinine, i.e., 80 to 90% must have been converted to polar conjugates or degradation products which are not detectable with the methods applied. Usually more than 98% of the recoverable alkaloids were found in the faeces. Excretion reached a maximum 6 h after injection in tolerant taxa. Larvae of Manduca sexta, which were reared on a nicotine-rich diet, showed higher nicotine degradation and faster nicotine elimination than na?ve larvae. Application of the cytochrome P450 inhibitor SKF 525A (proadifen) reduced the formation of nicotine N-oxide and the rate of alkaloid degradation. Thus, an inducible detoxification mechanism, coupled with a rapid and inducible excretion, appear to be a strategy in Sphingidae that helps them to live on host plants rich in otherwise toxic secondary metabolites. Received 23 March 2001; accepted 4 August 2001.  相似文献   

10.
Summary. The aim of this work was to investigate whether or not the predominant aggressive behaviour in spiders is stereotypic and whether there is a relation with cuticular chemicals. We compared the intraspecific behaviour of adult females of Tegenaria atrica reared in isolation and grouped. Some plasticity emerges from environmental conditions and allows spiders to tolerate each other. This switch of behaviour, in favour of “acceptance behaviour” vs. “attack”, is promoted by an increase in food resources. Learning during ontogenesis and changes in cuticular lipids could prolong it. A pattern of 6 compounds distinguishes grouped from solitary spiders. We hypothesize that a similar evolution could in part explain the emergence of certain communal species of spiders. Received 6 March 2001; accepted 22 June 2001.  相似文献   

11.
Summary. Endosymbiotic bacteria implicated in pederin production of Paederus (+)-females (Coleoptera: Staphylinidae) can be transmitted horizontally within and less frequently among the three species analyzed (P. melanurus, P. riparius, P. sabaeus). The 16S rDNA isolated from (+)-females reveals closely related bacterial sequences in the three species as well as in Paederus fuscipes and Paederidus ruficollis. This confirms the association of the undescribed endosymbiont and pederin biosynthesis in 5 of the 13 species that have been shown to contain the substance. In spite of the high sequence identities (> 99.5%), which suggest one species of endosymbiont, some of the heterospecific hosts were incompatible. This indicates adaptation and specific preferences of the endosymbiont for their natural host. Received 5 December 2001; accepted 11 March 2002.  相似文献   

12.
Summary. Field observations indicated that hornworms select feeding sites non-randomly on tobacco. We tested the hypotheses that differences in feeding site locations of larvae of Manduca sexta L. and Manduca quinquemaculata (Haworth) (Lepidoptera: Sphingidae) on tobacco could be explained by differential nicotine concentrations within plants and leaves, species-specific responses to nicotine, or pressure exerted by natural enemies. Results showed that third-instar larvae of M. sexta fed more proximally and centrally on the leaf, whereas M. quinquemaculata fed more distally. Within-plant selection of leaves did not differ; both species selected leaves in the middle region of the plant. Nicotine concentrations in a high nicotine genotype, NC95, varied within each leaf, increasing 2—3 fold from the basal to apical portion of the leaf, and within each plant, increasing 7—10 fold from the first fully expanded leaf to the twelfth (lowest) leaf. In laboratory bioassays, both Manduca species responded to nicotine as a feeding deterrent. Electrophysiological studies demonstrated that gustatory organs of both species responded to nicotine at concentrations found in tobacco leaves and that M. quinquemaculata generally showed a less vigorous response to nicotine than M. sexta. Field mortality of M. sexta due to parasitism by Cotesia congregata (Say) and to parasitism and predation combined differed among feeding sites; predation alone did not. Results suggest that although nicotine concentration and species specific responses to nicotine play a role in determining feeding site locations, pressure exerted by natural enemies, especially parasitism by C. congregata, is more important. Received 22 February 2000; accepted 20 July 2001.  相似文献   

13.
Summary. Sequestration and processing of pyrrolizidine alkaloids (PAs) by leaf beetles of the genus Platyphora were investigated. Tracer experiments with labeled alkaloids were performed with P. eucosma feeding on Koanophyllon panamense (Asteraceae, tribe Eupatorieae). P. eucosma catalyzes the same reactions previously demonstrated for P. boucardi specialized to Prestonia portobellensis (Apocynaceae): (i) epimerization of rinderine to intermedine; (ii) esterification of retronecine yielding insect-specific PAs; (iii) efficient transport of the PAs as free bases into the defensive secretions. P. bella feeding on Tournefortia cuspidata (Boraginaceae) shows the same sequestration behavior and ability to synthesize the specific retronecine esters. P. ligata, a species phylogenetically closely related to the PA adapted species and clustering in the same clade, but feeding on a host plant devoid of PAs, feeds easily on PA treated host-plant leaves, but does not sequester or metabolize PAs. P. kollari a species clustering outside the PA clade refused to feed on its food-plant leaves painted with PAs. The results are discussed in relation to host-plant selection of the PA adapted species and the role of PAs in chemical defense. Received 20 September 2002; accepted 18 November 2002.  相似文献   

14.
Summary. We investigated the hypothesis that aggregation signals produced by male webbing clothes moths (WCM), Tineola bisselliella (Hum.) (Lepidoptera: Tineidae), and close-range male attractant signals produced by females have a pheromonal basis, at least in part. Gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectrometric analyses of bioactive methanolic extracts of male WCM disclosed three candidate pheromone components: hexadecanoic acid methyl ester (16:Ester), (Z)-9-hexadecenoic acid methyl ester (Z9—16:Ester), and octadecanoic acid methyl ester (18:Ester). In bioassay experiments in a large Plexiglas™ arena, a blend of synthetic 16:Ester plus Z9—16:Ester was attractive to male and virgin (but not mated) female WCM; the 18:Ester was inactive. GC-EAD analyses of pheromone gland extracts from female WCM revealed (E,Z)-2,13-octadecadienal (E2Z13—18:Ald) and (E,Z)-2,13-octadecadienol (E2Z13—18:OH) as candidate sex pheromone components. In arena bioassay experiments, 1—5 female equivalents of synthetic E2Z13—18:Ald (0.2 ng) and E2Z13—18:OH (0.1 ng) were more attractive to male WCM than were two virgin female WCM. We anticipate that the combination of aggregation and sex pheromones, male-produced sonic aggregation signals, and habitat-derived semiochemicals will be highly effective in attracting male and female WCM to commercial traps. Received 12 January 2001; accepted 8 June 2001.  相似文献   

15.
Summary. Field collected exocrine defensive secretions of nine neotropical Platyphora species were analyzed for the presence of plant acquired pyrrolizidine alkaloids (PAs) and pentacyclic triterpene saponins. All species secrete saponins. In addition, five species feeding on Tournefortia (Boraginaceae), Koanophyllon (Asteraceae, tribe Eupatorieae) and Prestonia (Apocynaceae) were shown to sequester PAs of the lycopsamine type, which are characteristic for species of the three plant families. The PA sequestering species commonly store intermedine, lycopsamine and their O3′-acetyl or propionyl esters as well as O7- and O9-hydroxyisovaleryl esters of retronecine. The latter as well as the O3′-acyl esters were not found in the beetles’ host plants, suggesting the ability of the beetles to esterify plant derived retronecine and intermedine or its stereoisomers. Despite the conformity of the beetles’ PA patterns, considerable inconsistencies exist regarding the PA patterns of the respective host plants. One host plant was devoid of PAs, while another contained only simple necines. Since the previous history of the field collected beetles was unknown this discrepancy remains obscure. In contrast to the Palearctic chrysomeline leaf beetles, e.g. some Oreina species which ingest and store PAs as their non-toxic N-oxides, Platyphora leaf beetles absorb and store PAs as the toxic free base (tertiary PA), but apparently avoid to accumulate PAs in the haemolymph. This suggests that Chrysolina and Platyphora leaf beetles developed different lines of adaptations in their parallel evolution of PA mediated chemical defense. Received 30 November 2000; accepted 5 February 2001  相似文献   

16.
Summary. We investigated the effects of four chemically characterised galloylglucoses (GGs, a subgroup of hydrolysable tannins) and their hydrolysis product, gallic acid (GA), on consumption and performance of larvae of the autumnal moth Epirrita autumnata. Larvae were fed with birch (Betula pubescens) leaves that had been painted individually with each of the compounds at two levels, 5 and 20 mg/g. In addition, we investigated the fates of the leaf-painted GGs and GA in the E. autumnata digestive tract by comparing phenolics in leaves consumed and in faeces. In general, GGs reduced leaf consumption by E. autumnata during the second and fourth instars, although there was high compound- and instar-specific variation. However, GGs did not affect the leaf consumption rates by the most voracious fifth instar larvae. This resulted in approximately the same loss of total biomass by the experimental tree, regardless of the nature and level of GGs enriched to its foliage. The characteristic fate of hydrolysable tannins, i.e. hydrolysis, was evidenced in the larval digestive tract for three of the four leaf-painted GGs. In addition to hydrolysis, the almost total absence of GGs in larval faeces was presumably related to the oxidation of GGs. The dose-dependent excretion percentage of ingested GA showed that it's faecal content should not be used, although it commonly is, to calculate the level of GG hydrolysis. Moreover, by comparing the non-uniform appearance of faecal tetragalloylglucoses, whether ingested as such or hydrolysed from pentagalloylglucose, we concluded that a major part of oxidation of GGs occurs before their hydrolysis in the digestive tract of E. autumnata. Criticism against the common use of tannic acid, a heterogeneous mixture of GA and GGs, in ecological studies is presented. Received 15 May 2002; accepted 16 July 2002  相似文献   

17.
Summary. Many secondary plant compounds are involved in defense against both insect herbivores and pathogens. Two secondary plant compounds of Plantago lanceolata, the iridoid glycosides catalpol and its precursor aucubin, are well known for their deterrent effects on generalist and non-adapted specialist insect herbivores. We tested the effects of these compounds on the in-vitro growth of a specialist and generalist fungal pathogen of this host species. Two chemical forms of these iridoids were tested. The glycosides and their aglycones, the products of enzymatic conversion by specific $/Beta$-glucosidase enzymes. The glycosides enhanced growth of both the specialist fungus Diaporthe adunca and the generalist fungus Fusarium moniliforme var. subglutinans. The positive effect of these glycosides on the generalist fungus is in sharp contrast with the generally negative effects of these glysosides on generalist insect herbivores. The aglycones of aucubin and catalpol reduced the growth of the specialist fungus D. adunca, but, contrary to expectation, enhanced the growth of the generalist fungus F. moniliforme var. subglutinans. Effects of aucubin on D. adunca were stronger than effects of catalpol. This was true both for the growth stimulating effects of the glycosides and for the fungitoxic effects of the aglycones. We therefore expect that the effects of these iridoids in P. lanceolata on the specialist fungus will strongly depend on the ratio between catalpol and its precursor aucubin and the chemical form (glycoside or aglycone) in which these compounds are encountered by the fungus during growth. Our results suggest that iridoid glycosides in P. lanceolata can be used as defense against both herbivores and pathogens, but that their effects are highly specific with respect to the natural enemy species that is encountered. Received 11 April 2002; accepted 9 August 2002  相似文献   

18.
Summary. We tested the hypothesis that aggregation behaviour of the firebrat, Thermobia domestica (Packard) (Thysanura: Lepismatidae), an inhabitant of enclosed microhabitats, is mediated, at least in part, by a pheromone. Individual insects were released into the central chamber of a 3-chambered olfactometer and test stimuli were placed in lateral chambers. Paper discs previously exposed for 3 days to 10 female, male, or juvenile T. domestica were all preferred by female, male, or juvenile T. domestica over unexposed paper discs, indicating the presence of an aggregation/arrestment pheromone. In additional experiments, frass and scales from female T. domestica, tested singly and in combination, proved not to be the source of the pheromone. Physical contact was required for pheromone recognition, indicating that the pheromone arrests rather than attracts conspecifics. Arrestment by the long-tailed silverfish, Ctenolepisma longicaudata Escherich (Thysanura: Lepismatidae), but not by the common silverfish, Lepisma saccharina L. (Thysanura: Lepismatidae), to T. domestica exposed paper discs suggests closer phylogenetic relatedness between C. longicaudata and T. domestica, than between C. longicaudata and L. saccharina. Whether C. longicaudata or L. saccharina produce an aggregation signal, and whether T. domestica respond to this signal is unknown. Received 10 June 2002; accepted 30 September 2002.  相似文献   

19.
Summary. Individual variations in pheromone emission patterns were examined in a scarab beetle, Anomala cuprea Hope (Coleoptera: Scarabaeidae), by headspace collection of airborne volatiles from individual females. The amount of pheromone obtained varied among virgin females, and about 16% of these females (“silent” females) did not emit detectable amount of pheromone throughout the experimental period. There was no clear temporal pattern of peak pheromone emission for 19 days after the onset. More than half of the laboratory mated females completely stopped releasing pheromone after the first mating, while the rest of them continued releasing pheromone, frequently followed by additional mating. Received 26 March 2001; accepted 28 January 2002.  相似文献   

20.
Summary. The dulotic queen ant, Polyergus rufescens, must first penetrate a host colony and kill the resident queen in order to successfully founding a new colony. Successful usurpation by a newly mated queen predictably depends on a dual strategy. Although, it can sneak in by being “chemically insignificant” with respect to cuticular hydrocarbons, it may also need to deter prospective host-worker aggressors. Chemical analysis of Dufour's gland secretion of P. rufescens queens and workers by GS/MS revealed that queen secretion is typified by esters of butanoic acid and acetic acid, of which decyl butanoate comprises over 80%. Butanoates and acetates are also present in the workers' secretion, but these are of higher molecular weight, and octadecyl butanoate represents the major compound. Using synthetic mixtures of queen and worker Dufour's gland, we tested the hypothesis that these secretions modify the aggressive behavior of the host species Formica cunicularia>. The queen-like synthetic mixture significantly reduced aggression of the host workers towards alien conspecifics, but neither pentane nor the worker-like synthetic mixture showed this effect. Although Dufour's gland content of >Polyergus queens was suggested to function as an appeasement pheromone (Topoff et al. 1988; Mori et al. 2000), we hypothesized that it may in fact act as a repellent. In order to test this hypothesis we exposed starved F. cunicularia workers to a droplet of honey on a glass slide applied with one of the following compounds: decyl butanoate (queen major compound), octadecyl butanoate (worker main compound), limonene (a reported ant repellent), and pentane (solvent control). Of these, the workers were repelled only by the decyl butanoate and did not approach the honey. We conclude that during usurpation the queen actively repels aggressive workers by emitting Dufour's gland repellent, comprising the alternative tactic in the usurpation dual strategy. This represents another chemical weapon in the diverse arsenal used by parasites to overcome the host's resistance. Received 7 April 2000; accepted 17 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号