首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
厌氧氨氧化的研究及其应用   总被引:3,自引:0,他引:3  
厌氧氨氧化是近年来发现的一种新的氮素转化途径。与部分硝化相结合,应用于污水脱氮,具有运行成本低、节约能源和资源等优点。厌氧氨氧化是一生物过程,已确定的细菌有2种:Candidauas Brocadia anammoxidans和Candidatus Kuenenia stuttgartiensis。描述了其生理学特性、生物化学途径,介绍了其2种应用途径:全自养亚硝酸型脱氮(CANON)和SHARON-ANAMMOX。  相似文献   

2.
污泥颗粒化快速启动厌氧氨氧化反应器的探讨   总被引:1,自引:0,他引:1  
厌氧氨氧化工艺处理成本低,被认为是有应用前景的废水脱氮技术.但是,厌氧氨氧化菌生长缓慢,厌氧氨氧化反应器启动困难.探讨了几种快速启动厌氧氨氧化反应器的方法,包括投加颗粒污泥、惰性载体、絮凝剂及多价阳离子等,并对其作用机理进行了分析.  相似文献   

3.
自养脱氮工艺中同时存在亚硝酸化、硝酸化、厌氧氨氧化和反硝化4个过程,而有机物增加了自养脱氮工艺4个过程的脱氮复杂性,但也增加了更多的可能性。综述了有机物对亚硝酸化、硝酸化、厌氧氨氧化和反硝化的影响,整理了同步亚硝化/厌氧氨氧化/反硝化(SNAD)工艺和反硝化氨氧化(DEAMOX)工艺的最新研究进展。  相似文献   

4.
利用氮素计量关系和批式实验研究了SBR系统中基于短程硝化的单级自养脱氮特性和脱氮途径。结果表明,SBR系统获得良好脱氮效果,TN最高去除负荷和去除速率分别达0.49 kg N/(m3.d)和0.20 kg N/(kg VSS.d);系统中82%的氨氮转化成气体脱除,10%的氨氮转化成硝酸盐氮。批式实验结果表明,SBR系统中的污泥同时具有厌氧氨氧化、亚硝酸盐氧化和自养反硝化活性,三者的反应速率分别为0.12 kg NH4+-N/(kg VSS.d)、0.04 kg NO2--N/(kg VSS.d)和0.03 kg NO2--N/(kg VSS.d)。综上,SBR系统中氮的脱除是短程硝化、厌氧氨氧化和反硝化共同作用的结果,产生的硝酸盐是厌氧氨氧化和硝化作用所致。  相似文献   

5.
生物流化床厌氧氨氧化脱氮处理垃圾渗滤液的研究   总被引:3,自引:0,他引:3  
采用厌氧流化床反应器 (AFB)作为厌氧氨氧化反应器 ,对垃圾渗滤液脱氮进行了研究。以模拟废水完成了反应器的启动 ,然后加入一定比例的垃圾渗滤液 ,对垃圾渗滤液厌氧氨氧化脱氮的影响因素进行了研究 ,取得了较好的脱氮效果。实验表明 ,厌氧氨氧化脱氮对高氨氮浓度的垃圾渗滤液的处理具有较大的潜力。  相似文献   

6.
研究了上流式厌氧污泥床(UASB)反应器中厌氧氨氧化工艺的脱氮性能。接种体积比为1∶1的已驯化半年的厌氧氨氧化污泥混培物和城市污水处理厂回流污泥,采用提高基质浓度和缩短水力停留时间(HRT)2种方式提高UASB反应器的脱氮性能。结果发现,2种方式结合可在UASB反应器中获得较高的脱氮速率,经过280d后,最高总氮去除速率达到5.16kg/(m3·d)。缩短HRT并未对UASB反应器的脱氮效果产生不良影响,反而强化了脱氮性能。HRT由0.4d缩短至0.2d时,总氮去除速率由1.89kg/(m3·d)增加到3.66kg/(m3·d)。形成的颗粒污泥中的细菌的细胞形态不规则,内部有厌氧氨氧化体,为典型厌氧氨氧化菌结构特征。污泥的比基质转化速率为3.15kg/(kg·d)。经16SrDNA检测,污泥中的厌氧氨氧化菌属于"Candidatus Kuenenia"属。  相似文献   

7.
阐述了污水低氧脱氮的基本原理,即抑制或去除亚硝酸盐氧化菌(NOB),同时保留氨氧化菌(AOB),并保持其活性;探讨了污水低氧脱氮实现途径;详细介绍了几种典型的污水低氧脱氮工艺(短程硝化(SHARON)工艺、厌氧氨氧化(ANAMMOX)工艺、好氧反氨化(DEMON)工艺、低氧自养硝化反硝化(OLAND)工艺、甲烷营养型硝化反硝化工艺和亚硝酸盐型完全自养脱氮(CANNON)工艺)的应用研究进展;最后对污水低氧脱氮处理工艺的工程运用进行了展望.  相似文献   

8.
生物流化床厌氧氨氧化脱氮处理垃圾渗滤液的研究   总被引:4,自引:0,他引:4  
采用厌氧流化床反应器(AFB)作为厌氧氨氧化反应器,对垃圾渗滤液脱氮进行了研究。以模拟废水完成了反应器的启动,然后加入一定比例的垃圾渗滤液,对垃圾渗滤液厌氧氨氧化脱氮的影响因素进行了研究,取得了较好的脱氮效果。实验表明,厌氧氨氧化脱氮对高氨氮浓度的垃圾渗滤液的处理具有较大的潜力。  相似文献   

9.
高基质浓度下厌氧氨氧化反应器的启动过程   总被引:2,自引:0,他引:2  
李祥  黄勇  袁怡 《环境工程学报》2010,4(8):1771-1775
采用3套厌氧序批式生物膜反应器,研究了高基质浓度对厌氧氨氧化反应器启动过程的影响。经过50 d左右培养,3个反应器氮容积去除负荷均达到0.23 kg N/(m3.d)。但是随着氮容积负荷的提高,反应器内pH也随之升高,最终超过了厌氧氨氧化菌最适生长条件,3个反应器脱氮效果逐渐下降。然后分别通过降低浓度、延长水力停留时间的方式对其脱氮效能进行恢复性研究。结果表明高基质浓度不利于厌氧氨氧化反应器脱氮能力的增强。采用低基质浓度的方式提高反应器氮容积去除负荷时,脱氮效能不仅得到了恢复,而且能够提高到0.45 kg N/(m3.d)。说明低基质难度比高基质浓度更有利于厌氧氨氧化脱氮效能的提高。  相似文献   

10.
针对厌氧氨氧化工艺启动速度慢及在垃圾渗滤液中脱氮效率低的问题,探究了厌氧氨氧化工艺在处理高氨氮、低C/N比垃圾渗滤液中的快速启动及稳定运行策略。结果表明,厌氧氨氧化工艺接种反硝化污泥:anammox颗粒污泥=9:1的启动效果最佳,100 d时TN去除率可达75.1%。但由于垃圾渗滤液中COD较高,异养反硝化菌生长迅速且严重影响厌氧氨氧化菌活性。通过投加6 mg·L-1的N2H4之后,异养反硝化菌活性受到抑制,反应器内厌氧氨氧菌占据主导地位,Candidatus Kuenenia菌相对丰度由0.2%提升到10.6%,TN去除率及氮去除速率分别达90.6%和0.143 kg·(kg·d)-1以上。在厌氧氨氧化工艺中投加适量N2H4可实现垃圾渗滤液的稳定高效自养脱氮。  相似文献   

11.
以(NH4):SO4和NaNO2作为基质,富集厌氧氨氧化污泥.提取厌氧氨氧化污泥中细菌总DNA,纯化后使用特异性引物对厌氧氨氧化菌16S rDNA进行PCR扩增.扩增产物连接到pMD19-T载体,将载体转化到感受态细胞大肠杆菌JM109中,并对其16S rDNA基因进行测序.将测序结果进行系统发育树分析,发现富集得到的厌氧氨氧化菌与Candidatus Anammoxoglobus propionicus进化关系比较接近,是一种尚未见报道的厌氧氨氧化菌.  相似文献   

12.
研究有机碳源对SBBR厌氧氨氧化菌群等微生物的影响。采用16S rDNA序列与PCR-DGGE分析技术相结合的方法,对稳定运行的反应器内的活性污泥和生物膜样品,进行细菌多样性图谱分析,同时采用巢式PCR-DGGE技术对浮霉状菌属(Planctomycetes)细菌进行分析。结果表明,在有机碳源反应系统细菌条带数和多样性指数均高于无机系统,与活性污泥相比,生物膜表尤为明显。当进水不含有机碳源时,氨氧化细菌(ammonia oxidizing bacteria,AOB),厌氧氨氧化菌(anaerobic ammonia oxidizing bacteria,ANAMMOX)为优势功能菌;当进水含有机碳源时,系统中存在的AOB以亚硝化单胞菌(Nitrosomonas sp.)为优势菌群,同时存在反硝化菌,如索氏菌(Thauera sp.)以及厌氧氨氧化菌,它们共同作用完成N的去除。此外,与无机碳源系统相比,有机碳源的存在,有利于浮霉状菌的积累,但压缩了ANAMMOX的生存空间。本研究可为厌氧氨氧化工艺处理低C/N比有机废水提供了理论依据。  相似文献   

13.
基于全程硝化反硝化的传统生物脱氮工艺在硝化过程中需要大量氧气供应,反硝化过程需要有机物作为碳源,存在能耗与药耗过大的问题.为了降低废水脱氮的成本,短程硝化(PN)—厌氧氨氧化(ANAMMOX)组合工艺(PNA工艺)得到了高速发展.综述了PNA工艺的影响因素,重点介绍了4种基于PN与ANAMMOX原理开发的衍生PNA工艺...  相似文献   

14.
采用厌氧氨氧化污泥,通过脱氮效能的测定,研究了常温(15±2)℃下保藏过程中基质添加与保藏时间对污泥活性的影响以及探讨长期保持污泥活性的保藏策略。结果表明,在无营养物添加的情况下,保藏的前45天厌氧氨氧化污泥氮去除速率由0.107 kg/(m3·d)下降到0.025 kg/(m3·d),其速率下降最快,但是经过6 d培养,污泥的活性可以得到恢复;当保藏365 d后,厌氧氨氧化污泥活性基本消失,即使通过11 d恢复也无明显的厌氧氨氧化特性。说明常温下保藏时间对厌氧氨氧化污泥活性影响显著,随着保藏时间的延长污泥氮去除速率会大幅降低,甚至消失。根据衰减指数模型拟合出常温状态下厌氧氨氧化污泥活性衰减模型为y=0.547×exp(-0.0109×t)。通过定期(15 d)投加营养物,经过150d和365 d保藏后的厌氧氨氧化污泥仍然保持48%和31%的活性。说明定期投加营养物可以有效缓解厌氧氨氧化污泥活性在常温保藏过程中的衰减,适用于厌氧氨氧化污泥常温下长期保藏。  相似文献   

15.
向成功启动并稳定运行630 d后的UASB生物膜反应器系统连续添加有机物,分析其对厌氧氨氧化反应脱氮效果的影响,并进行氮素浓度负荷试验.在厌氧氨氧化反应器系统中连续投加有机COD(葡萄糖),系统运行稳定,有机COD(葡萄糖)存在对系统去除氮素能力影响不大,有机COD去除率达到92.0%,仅用23 d,在同一反应器系统中成功实现了厌氧氨氧化与反硝化协同作用脱氮.氮素浓度负荷试验阶段,进水氨氮(NH 4-N)、亚硝氮(NO-2-N)以及总氮(TN)浓度负荷分别从0.063 kg/(m3·d)和0.063 kg/(m3·d)和0.126 kg/(m3·d)提升到了0.239 kg/(m3·d)、0.315 kg/(m3·d)和0.554 kg/(m3·d),相应去除率分别为84.0%、93.0%和85.0%,厌氧氨氧化工艺的UASB生物膜反应器对氮素浓度负荷仍有很大提升空间.  相似文献   

16.
浅谈ANAMMOX反应的启动研究   总被引:3,自引:0,他引:3  
厌氧氨氧化(ANAMMOX)是一种新型的生物脱氮技术,在废水处理方面具有良好的应用前景。但由于厌氧氨氧化细菌生长缓慢,倍增时间长达11d,因此,厌氧氨氧化反应器的启动成为众多学者的研究对象。文中概述了近年来的学者们在研究厌氧氨氧化启动时,以选择不同反应器、接种不同污泥和采用不同方法,富集培养的过程及经验。同时通过分析启动过程中各种氮的变化情况,来进一步理解启动过程。  相似文献   

17.
由于反应沉淀一体化反应器的HRT与SRT不同,因此HRT是否会影响反应器中氮的存在状态,亚硝态氮积累是否能实现尚无明确结论。针对以上问题,研究不同水力停留时间对反应沉淀一体化反应器中半亚硝化反应的影响,研究结果表明:反应器运行虽然运行过程中无污泥流失,但仍可实现亚硝酸盐的积累,出水亚硝态氮和氨氮的浓度比例受水力停留时间的影响。HRT为24 h时,亚硝酸盐积累率可达到70%,但出水氨氮接近于0,很难满足ANAMMOX 的进水要求;HRT为16 h和12 h时,亚硝酸盐积累率均可超过80%,出水氨氮和亚硝态氮的比例分别达到1.39:1和1.46:1,可为后续ANAMMOX反应提供良好进水条件。水力停留时间对污泥亚硝化潜力的影响为12 h>16 h>24 h,对硝化潜力的影响为24 h>16 h>12 h。不同水力停留时间下氨氧化速率和亚硝酸盐氧化速率均为24 h>16 h>12 h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号