首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
颗粒填料生物滤池运行过程中,微生物在颗粒填料表层不断生长积累,造成生物堵塞,严重影响生物滤池长期稳定运行。针对生物滤池颗粒填料层动态堵塞过程,综合基质迁移与降解模型、微生物生长与衰亡模型、孔隙率变化模型和渗滤系数变化模型,构建颗粒填料生物滤池生物堵塞模型。微生物生长动力学参数采用原位测定方法,能够反映附着生物膜生长情况。基于玻璃微珠填料生物滤池研究表明,修正生物堵塞模型能较好地模拟玻璃微珠生物滤池颗粒填料层的动态堵塞过程。  相似文献   

2.
通过模拟污染介质的静态脱附实验和一维模拟柱冲洗实验,对比了鼠李糖脂、Tween-80、TX-100对苯的修复效果,筛选出最优表面活性剂进行实际污染土样修复,确定最佳修复技术参数。结果表明:3种表面活性剂对苯的脱附效果为鼠李糖脂>Tween-80>TX-100。采用鼠李糖脂淋洗液进行实际污染土样动态冲洗修复时,鼠李糖脂质量分数宜为0.20%,冲洗流速不宜超过14.4 mL/d,淋洗液冲洗量宜为4倍孔隙体积(PV),在此条件下苯的出流质量浓度最低可达到0.29 mg/L。在实际污染场地修复应用时,修复后应持续注入2倍PV以上的清水冲洗出残留污染物和修复药剂,研究结果可为苯系物污染含水层的表面活性剂修复提供理论指导和技术支撑。  相似文献   

3.
表面活性剂冲洗修复多氯联苯污染土壤多相流研究   总被引:3,自引:1,他引:2  
多氯联苯(PCBs)是一种具有持久性、抗生物降解性、脂肪溶性和明显的生物毒性等特性的持久性有机污染物,PCBs在土壤中难于准确定位、难被分解和强烈吸附,去除土壤中PCBs比较困难.表面活性剂冲洗法可以通过提高PCBs溶解度和降低水-PCBs界面张力来实现PCBs从土壤中去除;表面活性剂冲洗PCBs污染土壤涉及气相、水相、NAPLs相和固相等物质,是多相共存并相互发生作用的过程,发生相对渗透率、饱和度和毛细压力的变化;另外,为研究表面活性剂冲洗土壤中PCBs的去除机理,并降低PCBs对研究人员的危害,采用微观孔隙结构网络模型是一种较新颖的和效果显著的研究方法.开展表面活性剂冲洗PCBs污染土壤多相流研究,可以为PCBs污染场地修复提供理论基础和实验支持,并促进我国POPs履约工作的顺利进行.  相似文献   

4.
提出一种配合网格质点法的能量耗散模型,考虑颗粒之间碰撞引起的能量耗散效应以描述颗粒的团聚行为。采用该模型模拟的旋风分离器颗粒流发现:较其他模型具有较高的预测精度,模拟结果与实验吻合较好,验证了耗散模型可行。旋风分离器的中心形成负压区域,而在靠近壁面处形成高压区域。气相场呈现以中心为轴同转向不同流向的双螺旋结构,大部分颗粒被夹带到壁面附近,聚集在一起,形成聚团并产生分离,模拟结果发现旋风分离器在模拟条件下的分离粒径为1×10~(-5)m。  相似文献   

5.
有机污染物湿地生物降解实验规律研究   总被引:6,自引:0,他引:6  
本文以苯,甲苯和萘为对象,通过实验研究,测定有机污染物的土壤-水吸附平衡过程,在水溶液中生物降解过程以及在湿地系统(即土壤-水-微生物系统)中生物降解过程,并以质量守恒定律为基础,建立有机污染物湿地生物降解过程综合数学模型,数学模型通过实验验证,利用模型,定量预测了污染物生物降解所需的时间和程度,并提出动力学因子FK,判断污染物湿地生物降解速度的控制因素,定量预测了污染物在土壤固相的浓度分布规律。  相似文献   

6.
根据固定床颗粒层内气流含尘浓度的连续方程、颗粒层过滤规律和新型颗粒层的过滤特点,建立了固定床颗粒层过滤过程和新型颗粒层过滤性能的宏观数学模型;根据颗粒层的过滤机理和实际灰尘颗粒粒径的分布状态,在实验的基础上,修正了过滤速度对颗粒层过滤效率的影响;根据实验结果对过滤效率方程式、床层压降方程式中的特征参数进行了回归,得到了具体过滤介质的颗粒层宏观过滤数学模型。模型表明新型颗粒层过滤过程是一个不随过滤时间变化的准稳态过程,只与过滤介质特性和循环清灰周期有关,模型计算值能准确地反映颗粒层的过滤性能。  相似文献   

7.
土壤理化性质、污染物的分布及赋存特征是土壤异位淋洗技术是否可行的关键依据。以西北某废弃铬盐厂铬污染场地土壤作为研究对象,测定了土壤基本理化参数及各粒径污染物的浓度,探究总铬和六价铬在不同粒径土壤中的分布特征,并通过铬的赋存形态分析确定清水作为淋洗剂,开展异位清水淋洗实验。结果表明:供试土壤粗颗粒物料(粒径分别为:9.50 mm、2.00~9.50 mm、0.841~2.00 mm及0.25~0.841 mm)占土壤总质量的比例达到93.36%,总铬和六价铬污染物富集于土壤细颗粒(粒径0.25 mm);同时,土壤各级粒径颗粒中水溶态和弱酸提取态铬所占比例均大于50%;以清水做淋洗剂时,总铬和六价铬的去除率分别高于60%和80%,且淋洗后土壤各级粒径中六价铬含量均低于30 mg·kg~(-1),达到修复标准要求。  相似文献   

8.
通过碳热还原强化酸浸的方法高效去除CRT锥玻璃中的重金属铅,同时将脱铅残渣转变为玻璃微珠产品。实验考察了还原温度、碳粉加入量和保温时间对锥玻璃中铅浸出效果的影响。研究结果表明,经碳热还原预处理后锥玻璃中的氧化铅转变为单质铅并主要富集在玻璃微珠表面,通过酸浸处理可高效回收锥玻璃中的铅。当锥玻璃与10%碳粉混合均匀,在1 200℃条件下处理30 min,锥玻璃中铅的浸出效率可达94.80%,脱铅残渣为粒径范围1~15μm的玻璃微珠。  相似文献   

9.
在循环流化床炉内喷钙控制SO_2的过程中,新生成的CaSO_4会堵塞CaO颗粒的孔隙,导致脱硫效率的降低。通常认为CaSO_4堵塞CaO颗粒孔隙有2种形式:其一是CaSO_4产物层覆盖在颗粒的外表面造成堵塞孔隙出口;其二是SO_2进入孔隙内部生成CaSO_4形成均匀堵塞。这种处理方法忽略了孔隙内部的SO_2浓度差异,与实际情况相差甚远。针对此问题,建立了离散化的收缩孔隙随机孔模型对CaO颗粒与SO_2的反应过程进行数值模拟。模型考虑了生成的CaSO_4对有效扩散系数的影响,孔隙内部SO_2浓度差异对于CaO颗粒转化速率的影响,以及反应过程中孔隙结构收缩对于颗粒整体转化的影响。通过Fortran自主编程并计算,结果表明模型与实验数据吻合较好。CaO颗粒反应过程中,由于颗粒外部SO_2浓度高而率先反应并堵塞颗粒孔隙,导致颗粒内部大量CaO没有参与反应。CaO硫酸盐化的最佳环境温度为800~900℃,过高和过低都会对其硫酸盐化产生负面影响。颗粒粒径越小,CaO硫酸盐化率越高。  相似文献   

10.
采用FLUENT软件对SCX型脱硫除尘器内部气固两相流场进行数值模拟.气相采用Realizable k-ε湍流模型,颗粒相采用离散相模型(DPM),压力-速度耦合算法选择SIMPLE进行计算.分析了装置内z=0截面上气相压力和速度的分布,并对不同粒径颗粒的浓度和运动轨迹进行计算,还在考虑重力及不考虑重力2种情况下分析了...  相似文献   

11.
Laboratory column flushing experiments were conducted to remove phenanthrene from contaminated soils by Triton X-100 (TX100) with an aim to investigating the effect of surfactant sorption on the performance of surfactant-enhanced remediation process. The effluent concentration of phenanthrene from soil columns showed strong dependence on the sorption breakthrough curves of TX100. The removal of phenanthrene from contaminated soils was enhanced only when the sorption breakthrough of TX100 occurred and the influent concentration of TX100 was greater than the critical enhanced flushing concentration (CEFC). The sorption of surfactant onto soils and the subsequent partitioning of contaminants into soil-sorbed surfactant had a significant effect on the solute equilibrium distribution coefficient (KD) and thus the flushing efficiency for phenanthrene. A model was developed to predict KD and CEFC values for simulating the performance of surfactant-enhanced flushing for contaminated soils. These results are of practical interest in developing effective and safe surfactant-enhanced remediation technologies.  相似文献   

12.
表面活性剂冲洗法是一种治理土壤与地下水非水相流体(NAPLs)污染的有效技术.在简要介绍表面活性剂冲洗法去除作用机理的基础上,总结了近些年来与表面活性剂冲洗法多相流相关的国内外试验研究和模型研究成果,主要包括表面活性剂作用所引起的混溶驱替和不混溶驱替多相流问题,并指出目前研究中存在的问题和进一步探讨的方向.  相似文献   

13.
Biosurfactant-enhanced solubilization of NAPL mixtures   总被引:5,自引:0,他引:5  
Remediation of nonaqueous phase liquids (NAPLs) by conventional pump-and-treat methods (i.e., water flushing) is generally considered to be ineffective due to low water solubilities of NAPLs and to mass-transfer constraints. Chemical flushing techniques, such as surfactant flushing, can greatly improve NAPL remediation primarily by increasing the apparent solubility of NAPL contaminants. NAPLs at hazardous waste sites are often complex mixtures. However, the equilibrium and nonequilibrium mass-transfer characteristics between NAPL mixtures and aqueous surfactant solutions are not well understood. This research investigates the equilibrium solubilization behavior of two- and three-component NAPL mixtures (containing akylbenzenes) in biosurfactant solutions. NAPL solubilization is found to be ideal in water (i.e., obeys Raoult's Law), while solubilization in biosurfactant solutions was observed to be nonideal. Specifically, the relatively hydrophobic compounds in the mixture experienced solubility enhancements that were greater than those predicted by ideal enhanced solubilization theory, while the solubility enhancements for the relatively hydrophilic compounds were less than predicted. The degree of nonideality is shown to be a nonlinear function of the NAPL-phase mole fraction. Empirical relationships based on the NAPL-phase mole fraction and/or micelle-aqueous partition coefficients measured in single-component NAPL systems are developed to estimate values for the multicomponent partition coefficients. Empirical relationships that incorporate both the NAPL-phase mole fraction and single-component partition coefficients yield much improved estimates for the multicomponent partition coefficient.  相似文献   

14.
This study provides a coupled simulation–optimization approach for optimal design of petroleum-contaminated groundwater remediation under uncertainty. Compared to the previous approaches, it has the advantages of: (1) addressing the stochasticity of the modeling parameters in simulating the flow and transport of NAPLs in groundwater, (2) providing a direct and response-rapid bridge between remediation strategies (pumping rates) and remediation performance (contaminant concentrations) through the created proxy models, (3) alleviating the computational cost in searching for optimal solutions, and (4) giving confidence levels for the obtained optimal remediation strategies. The approach is applied to a practical site in Canada for demonstrating its performance. The results show that mitigating the effects of uncertainty on optimal remediation strategies (through enhancing the confidence level) would lead to the rise of remediation cost due to the increase in the total pumping rate.  相似文献   

15.
随着城市结构调整,工业企业易地搬迁后遗留下大量污染场地,严重威胁人居环境,亟待开展土壤修复.土壤淋洗技术具有工艺简单、处理范围广、修复效率高和治理费用相对低廉等优点,是目前修复重金属污染土壤最有效的技术之一,同时对于有机物污染土壤也具有显著修复效果.经过大量资料、文献调研,系统梳理土壤淋洗技术在国内的研究现状,结合实际...  相似文献   

16.
Liang C  Lee IL  Hsu IY  Liang CP  Lin YL 《Chemosphere》2008,70(3):426-435
In situ chemical oxidation with persulfate anion (S2O82*) is a viable technique for remediation of groundwater contaminants such as trichloroethylene (TCE). An accelerated reaction using S2O82* to destroy TCE can be achieved via chemical activation with ferrous ion to generate sulfate radicals (SO4*)(E degrees =2.6 V). The column study presented here simulates persulfate oxidation of TCE in porous media (glass beads and a sandy soil). Initial experiments were conducted to investigate persulfate transport in the absence of TCE in the column. The persulfate flushing exhibited a longer residence time and revealed a moderate persulfate interaction with soils. In TCE treatment experiments, the results indicate that the water or persulfate solution would push dissolved TCE from the column. Therefore, the effluent TCE concentration gradually increased to a maximum when about one pore volume was replaced with the flushing solution in the column. The presence of Fe2+ concentration within the column caused a quick drop in effluent TCE concentration and more TCE degradation was observed. When a TCE solution was flushing through the soil column, breakthrough of TCE concentration in the effluent was relatively slow. In contrast, when the soil column was flushed with a mixed solution of persulfate and TCE, persulfate appeared to preferentially oxidize soil oxidizable matter rather than TCE during transport. Hence, persulfate oxidation of soil organics may possibly reduce the interaction between TCE and soil (e.g., adsorption) and facilitate the transport of TCE through soil columns resulting in faster breakthrough.  相似文献   

17.
Hot water flushing for immiscible displacement of a viscous NAPL   总被引:2,自引:0,他引:2  
Thermal remediation techniques, such as hot water flooding, are emerging technologies that have been proposed for the removal of nonaqueous phase liquids (NAPLs) from the subsurface. In this study a combined laboratory and modeling investigation was conducted to determine if hot water flooding techniques would improve NAPL mass removal compared to ambient temperature water flushing. Two experiments were conducted in a bench scale two-dimensional sandbox (55 cmx45 cmx1.3 cm) and NAPL saturations were quantified using a light transmission apparatus. In these immiscible displacement experiments the aqueous phase, at 22 degrees C and 50 degrees C, displaced a zone with initial NAPL saturations on the order of 85%. The interfacial tension and viscosity of the selected light NAPL, Voltesso 35, are strongly temperature-dependent. Experimental results suggest that hot water flooding reduced the size of the high NAPL saturation zone, in comparison to the cold water flood, and yielded greater NAPL mass recovery (75% NAPL removal vs. 64%). Hot water flooding did not, however, result in lower residual NAPL saturations. A numerical simulator was modified to include simultaneous flow of water and organic phases, energy transport, temperature and pressure. Model predictions of mass removal and NAPL saturation profiles compared well with observed behavior. A sensitivity analysis indicates that the utility of hot water flooding improves with the increasing temperature dependence of NAPL hydraulic properties.  相似文献   

18.
A variety of column experiments have been completed for the purpose of selecting and evaluating suitable surfactants for remediation of nonaqueous phase liquids (NAPLs). The various NAPLs tested in the laboratory experiments were tetrachloroethylene (PCE), trichloroethylene (TCE), jet fuel (JP4) and a dense nonaqueous phase liquid from a site at Hill Air Force Base, UT. Both Ottawa sand and Hill field soil were used in these experiments. Surfactant candidates were first screened using phase behavior experiments and only the best ones were selected for the subsequent column experiments. Surfactants which showed high contaminant solubilization, fast coalescence times, and the absence of liquid crystal phases and gels during the phase behavior experiments were tested in soil column experiments. The primary objective of the soil column experiments was to identify surfactants that recovered at least 99% of the contaminant. The secondary objective was to identify surfactants that show low adsorption and little or no loss of hydraulic conductivity during the column experiments. Results demonstrated that up to 99.9% of the contaminants were removed as a result of surfactant flooding of the soil columns. The addition of xanthan gum polymer to the surfactant solution was shown to increase remediation efficiency as a lower volume of surfactant was required for recovering a given volume of NAPL. Based on these experimental results, guidelines for designing highly efficient and robust surfactant floods have been developed and applied to a field demonstration.  相似文献   

19.
Contamination of the subsurface by nonaqueous phase liquids (NAPLs) is a widespread problem. To investigate the behavior of a nonspreading, dense NAPL (DNAPL) in the vadose zone, we conducted perchloroethylene (PCE) infiltration experiments in nominally 1- and 2-dimensional (D), stratified porous media. In addition, the usefulness and limitations of a multifluid flow simulator to describe PCE infiltration and redistribution under the experimental conditions were tested. The physical simulations were conducted in a column (1-D) and a flow container (2-D) which were packed with two distinct layers of coarse-grained sand and a fine-grained sand layer in between. Volumetric water and PCE contents were determined with a fully automated dual-energy gamma radiation system. While migrating through the drier parts of the coarse-grained sand layers, PCE appeared to wet the water–air interface rather than displacing any water. In the wetter parts of the porous medium, PCE displaced water and behaved as a true nonwetting fluid. PCE showed a limited response to gradients in capillary pressure and rather high values for the volumetric PCE content were measured in the fine-grained sand layers. This was attributed to the nonspreading nature of PCE. The multifluid flow simulator appeared to predict the initial PCE movement in the vadose zone reasonably well. However, the model was not capable of predicting the final amounts of PCE retained in either the unsaturated or saturated part of the flow domain, mainly because the simulator does not consider the nonspreading flow behavior of NAPLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号