首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O,O,O-triethyl phosphorothioate ((C2H5O)3PS, TEPT) is a widely used organophosphorus insecticide. TEPT may be released into the atmosphere where it can undergo transport and chemical transformations, which include reactions with OH radicals, NO3 radicals and O3. The mechanism of the atmospheric reactions of TEPT has not been fully understood due to the short-lifetime of its oxidized radical intermediates, and the extreme difficulty in detection of these species experimentally. In this work, we carried out molecular orbital theory calculations for the OH radical-initiated atmospheric photooxidation of TEPT. The profile of the potential energy surface was constructed, and the possible channels involved in the reaction are discussed. The theoretical study shows that OH addition to the PS bond and H abstractions from the CH3CH2O moiety are energetically favorable reaction pathways. The dominant products TEP and SO2 arise from the secondary reactions, the reactions of OH-TEPT adducts with O2. The experimentally uncertain dominant product with molecular weight 170 is mostly due to (C2H5O)2P(S)OH and not (C2H5O)2P(O)SH.  相似文献   

2.
Abstract

The traditional technologies for odor removal of thiol usually create either secondary pollution for scrubbing, adsorption, and absorption processes, or sulfur (S) poisoning for catalytic incineration. This study applied a laboratory-scale radio-frequency plasma reactor to destructive percentage-grade concentrations of odorous dimethyl sulfide (CH3SCH3, or DMS). Odor was diminished effectively via reforming DMS into mainly carbon disulfide (CS2) or sulfur dioxide (SO2). The removal efficiencies of DMS elevated significantly with a lower feeding concentration of DMS or a higher applied rf power. A greater inlet oxygen (O2)/DMS molar ratio slightly improved the removal efficiency. In an O2-free environment, DMS was converted primarily to CS2, methane (CH4), acetylene (C2H2), ethylene (C2H4), and hydrogen (H2), with traces of hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and dimethyl disulfide. In an O2-containing environment, the species detected were SO2, CS2, carbonyl sulfide, carbon dioxide (CO2), CH4, C2H4, C2H2, H2, formal-dehyde, and methanol. Differences in yield of products were functions of the amounts of added O2 and the applied power. This study provided useful information for gaining insight into the reaction pathways for the DMS dissociation and the formation of products in the plasmolysis and conversion processes.  相似文献   

3.
An interpretative modeling analysis is conducted to simulate the diurnal variations in OH and HO2+RO2 observed at Summit, Greenland in 2003. The main goal is to assess the HOx budget and to quantify the impact of snow emissions on ambient HOx as well as on CH2O and H2O2. This analysis is based on composite diurnal profiles of HOx precursors recorded during a 3-day period (July 7–9), which were generally compatible with values reported in earlier studies. The model simulations can reproduce the observed diurnal variation in HO2+RO2 when they are constrained by observations of H2O2 and CH2O. By contrast, model predictions of OH were about factor of 2 higher than the observed values. Modeling analysis of H2O2 suggests that its distinct diurnal variation is likely controlled by snow emissions and loss by deposition and/or scavenging. Similarly, deposition and/or scavenging sinks are needed to reproduce the observed diel profile in CH2O. This study suggests that for the Summit 2003 period snow emissions contribute ∼25% of the total CH2O production, while photochemical oxidation of hydrocarbon appears to be the dominant source. A budget assessment of HOx radicals shows that primary production from O(1D)+H2O and photolysis of snow emitted precursors (i.e., H2O2 and CH2O) are the largest primary HOx sources at Summit, contributing 41% and 40%, respectively. The snow contribution to the HOx budget is mostly in the form of emissions of H2O2. The dominant HOx sink involves the HO2+HO2 reaction forming H2O2, followed by its deposition to snow. These results differ from those previously reported for the South Pole (SP), in that primary production of HOx was shown to be largely driven by both the photolysis of CH2O and H2O2 emissions (46%) with smaller contributions coming from the oxidation of CH4 and the O(1D)+H2O reaction (i.e., 27% each). In sharp contrast to the findings at Summit in 2003, due to the much higher levels of NOx, the SP HOx sinks are dominated by HOx–NOx reactions, leading to the formation and deposition of HNO3 and HO2NO2. Thus, a comparison between SP and Summit studies suggests that snow emissions appear to play a prominent role in controlling primary HOx production in both environments. However, as regards to maintaining highly elevated levels of OH, the two environments differ substantially. At Summit the elevated rate for primary production of HOx is most important; whereas, at SP it is the rapid recycling of the more prevalent HO2 radical, through reaction with NO, back to OH that is primarily responsible.  相似文献   

4.
Methods for estimating the dry deposition velocities of atmospheric gases in the U.S. and surrounding areas have been improved and incorporated into a revised computer code module for use in numerical models of atmospheric transport and deposition of pollutants over regional scales. The key improvement is the computation of bulk surface resistances along three distinct pathways of mass transfer to sites of deposition at the upper portions of vegetative canopies or structures, the lower portions, and the ground (or water surface). This approach replaces the previous technique of providing simple look-up tables of bulk surface resistances. With the surface resistances divided explicitly into distinct pathways, the bulk surface resistances for a large number of gases in addition to those usually addressed in acid deposition models (SO2, O3 NOx, and HNO3) can be computed, if estimates of the effective Henry's Law constants and appropriate measures of the chemical reactivity of the various substances are known. This has been accomplished successfully for H2O2, HCHO3 CH3CHO (to represent other aldehvdes), CH3O2H (to represent organic peroxides), CH3C(O)O2H, HCOOH (to represent organic acids), NH3, CH3C(O)O2NO2 and HNO2. Other factors considered include surface temperature, stomata1 response to environmental parameters, the wetting of surfaces by dew and rain, and the covering of surfaces by snow. Surface emission of gases and variations of uptake characteristics by individual plant species within the landuse types are not considered explicitly.  相似文献   

5.
This paper describes a study of the products of the Cl-atom-initiated oxidation of three alkyl iodides, RI=CH3I, C2H5I, and 2-C3H7I, carried out in synthetic air at atmospheric pressure and at room temperature. Fourier-transform infrared spectroscopy was used to follow the decay of reactants and subsequent formation of products. The primary step proceeds via two channels, one of which yields HCl and an iodinated alkyl radical, and the other I atoms and an alkyl chloride. Quantitative analysis of the product yields, together with an assessment of the formation of HCl in secondary processes, allowed the fractional branching into the two channels to be calculated. The channel yielding HCl from RI constitutes a fraction 0.59, 0.93, and 0.68 for R=CH3, C2H5, and 2-C3H7. The iodinated alkyl radical forms first a peroxy, and then an alkoxy, radical in the presence of air. The final products CH2O, CH3CHO, and CH3COCH3 were observed as expected for the decomposition of these radicals with RI=CH3I, C2H5I, and 2-C3H7I, and the fractions of the alkoxy radicals fragmenting to the carbonyl compounds were 0.88, 0.57, and 0.86, respectively. Atomic iodine is formed concomitantly with the carbonyl species, so that these fractions also indicate the yield of I atoms in the secondary process. Alternative reaction pathways for the iodinated alkoxy radicals, in particular reaction with O2, are evaluated and discussed. The yields of I atoms in the primary and secondary steps, taken in combination with kinetic data, make it possible to estimate the contribution of the Cl-initiated oxidation of the alkyl halides to I-atom production in the atmosphere (and, making certain assumptions, the analogous contribution from OH-initiated oxidation). Radical-initiated processes might augment the photolytic yield of I atoms from simple alkyl iodides: the maximum enhancements lie between 5% (CH3I) and more than 30% (2-C3H7I).  相似文献   

6.
The technique includes the use of two chromatographic columns in series to separate O2, N2, CO, CO2, H2O, H2S, SO2 and CH3SH. Column 1, containing Triton 45 on Chromosorb, separates H2O, H2S, SO2 and CH3SH. Column 2, packed with Molecular Sieve, separates O2, N2, CO and CO2. The conditions required to obtain adequate sensitivity and separation are discussed.  相似文献   

7.
The chemical composition of secondary organic aerosol (SOA) generated from the ozonolysis of isoprene (C5H8) in the presence of an OH scavenger was examined using high-resolution electrospray ionization mass spectrometry (ESI-MS) in the mass range m/z = 50–1000. The chemical composition of SOA is complex, with more than 1000 assigned peaks observed in the positive and negative ion mode spectra. Only a small fraction of peaks correspond to known products of isoprene oxidation, such as pyruvic acid, glycolic acid, methylglyoxal, etc. The absolute majority of the detected peaks correspond to highly oxidized oligomeric constituents of SOA, with an average O:C molar ratio of 0.6. The corresponding organic mass (OM) to organic oxygen (OO) ratio is 2.4. Approximately 8% of oxygen atoms in SOA are in the form of peroxides, as quantified with an iodide test. Double bond equivalency (DBE) factors, representing the sum of all double bonds and rings, increase by 1 for every 1–2 additional carbon atoms in the molecule. The number of unoxidized CC double bonds is estimated to be less than 10%; the remaining DBE is due to CO carbonyl groups. Kendrick analysis suggests that the prevalent oligomer building blocks are small carbonyls with a C1–C2 skeleton. Formaldehyde (CH2O) is identified as the most common repetitive building block in the observed oligomeric compounds.  相似文献   

8.
To investigate the effects of ambient-level gas-phase peroxides concurrent with O3 on foliar injury, photosynthesis, and biomass in herbaceous plants, we exposed Japanese radish (Raphanus sativus) to clean air, 50 ppb O3, 100 ppb O3, and 2-3 ppb peroxides + 50 ppb O3 in outdoor chambers. Compared with exposure to 100 ppb O3, exposure to 2-3 ppb peroxides + 50 ppb O3 induced greater damage in foliar injury, net photosynthetic rates and biomass; the pattern of foliar injury and the cause of net photosynthetic rate reduction also differed from those occurring with O3 exposure alone. These results indicate for the first time that sub-ppb peroxides + 50 ppb O3 can cause more severe damage to plants than 100 ppb O3, and that not only O3, but also peroxides, could be contributing to the herbaceous plant damage and forest decline observed in Japan's air-polluted urban and remote mountains areas.  相似文献   

9.
Hori H  Ishida K  Inoue N  Koike K  Kutsuna S 《Chemosphere》2011,82(8):1129-1134
The decomposition of hydroperfluorocarboxylic acids [H-PFCAs; HCnF2nCOOH (= 4 and 6)] induced by heteropolyacid photocatalyst H4SiW12O40 in water was investigated, and the results are compared with the results for the corresponding perfluorocarboxylic acids (PFCAs; CnF2n+1COOH). This is the first report on the photochemical decomposition of H-PFCAs, which are being developed as alternative surfactants to environmentally persistent and bioaccumulative PFCAs. H-PFCAs were not decomposed by irradiation with UV-Visible light (>290 nm) in the absence of H4SiW12O40. In contrast, UV-Visible light irradiation of H-PFCAs in the presence of H4SiW12O40 efficiently decomposed H-PFCAs to F and CO2. The decomposition reactions showed pseudo-first-order kinetics, and the decomposition rate constants were 1.8-2.5 times higher than those for the corresponding PFCAs. The reaction mechanism can be explained by elimination of H+ from the ω-H atom of the H-PFCAs by the excited catalyst, followed by formation of perfluorodicarboxylic acids.  相似文献   

10.
This study aimed to predict monthly columnar ozone (O3) in Peninsular Malaysia by using data on the concentration of environmental pollutants. Data (2003–2008) on five atmospheric pollutant gases (CO2, O3, CH4, NO2, and H2O vapor) retrieved from the satellite Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) were employed to develop a model that predicts columnar ozone through multiple linear regression. In the entire period, the pollutants were highly correlated (R?=?0.811 for the southwest monsoon, R?=?0.803 for the northeast monsoon) with predicted columnar ozone. The results of the validation of columnar ozone with column ozone from SCIAMACHY showed a high correlation coefficient (R?=?0.752–0.802), indicating the model’s accuracy and efficiency. Statistical analysis was utilized to determine the effects of each atmospheric pollutant on columnar ozone. A model that can retrieve columnar ozone in Peninsular Malaysia was developed to provide air quality information. These results are encouraging and accurate and can be used in early warning of the population to comply with air quality standards.  相似文献   

11.
Air pollution has a great impact on the social and economic aspects all over the world. In order to account the human interaction with the atmospheric environment, a suitable scientific basis is needed.That is why six physicochemical quantities have been determined in a previous work for each one heterogeneous system between organic volatile pollutants and oxide-pigments of works of art. This investigation is extended in order to determine experimentally five new ones. Thus, a more precise contribution to the elucidation of the mechanism of the deterioration of various works of art in museums is achieved. These physicochemical quantities are: (1) local adsorption energies, (2) local monolayer capacities, (3) local adsorption isotherms, (4) density probability function, and (5) pollutant concentration on the oxide-pigment at equilibrium. All these adsorption parameters mentioned above have been calculated as a function of experimental time for the systems: C6H6/TiO2, C6H6/NO2/TiO2, C6H6/Cr2O3, C6H6/NO2/Cr2O3, C6H5CH3/TiO2, C6H5CH3/NO2/TiO2, C6H5CH3/Cr2O3, C6H5CH3/NO2/Cr2O3, C6H6/PbO, C6H6/NO2/PbO, C6H5CH3/PbO, and C6H5CH3/NO2/PbO for the first time. Thus, in this work we shall stress the recent new aspect of Reversed Flow-(Inverse) Gas Chromatography (RF-GC or RF-IGC), i.e. the time-resolved chromatography related to the evaluation of some important adsorption parameters. Gas Chromatography is a promising meeting place of surface science and atmospheric chemistry.  相似文献   

12.

This article shows oily sawdust gasification research on countercurrent installation. Experimental research was on a laboratory scale. The main purpose of the experiment was combustible gas production with higher CH4 concentration. Gas concentrations like CO, CO2, CH4, H2, and CnHm determine syngas composition. The technological parameter’s value defines experimental conditions. Value of this was fuel to air ratio. With fuel to air ratio change, syngas composition was a differential phenomenon where it depended on the process parameters like temperature. Additionally, evaluation of methane formation from CO, H2, and CO2 was done. Methanization coefficients were based on CO and CO2 hydrogenation reactions. Component’s activity was in analogs way to syngas components changed.

  相似文献   

13.
14.
We have numerically modeled the breakdown of small quantities of several chlorinated hydrocarbons (CH3CI, CH2CI2, CHCI3, CCI4, C2H3CI, and C2H5CI) in a lean mixture of combustion products between 800 and 1480 K. This simulates the fate of poorly atomized waste in a liquid-Injection Incinerator. Kinetics calculations were performed using the CHEMKIN and SENKIN programs, with a reaction mechanism that was developed at Louisiana State University to model flat-flame burner experiments.

A 99.99-percent destruction efficiency was attained In one second at temperatures ranging from 1280 to 960 K, with CCI4 requiring the highest temperature for destruction and C2H5CI the lowest. For all compounds except C2H5CI, there was a range of temperatures at which byproducts accounted for several percent of the elemental chlorine at the outlet. The more heavily chlorinated compounds formed more byproducts even though the amount of elemental chlorine was the same in all cases. The sensitivity of results to residence time, equivalence ratio, temperature profile, and the presence of additional chlorine, was examined for the case of CHCI3.  相似文献   

15.
The influences of different kinds of anthropogenic activities on rainwater chemistry in a tropical area were studied during one uninterrupted year at Piracicaba River Basin (Southeast Brazil). A total of 272 rainwater samples collected continuously from August 1997 to July 1998 at four different sites were analyzed for F, CH3COO, HCOO, MSA, Cl, NO2, Br, NO3, SO42−, C2O42−, PO43−, Na+, NH4+, K+, Mg2+, Ca2+, DOC (dissolved organic carbon), DIC (dissolved inorganic carbon), pH and conductivity. The most abundant ion was H+ and rain acidity was significant at all sampling sites (average pH of 4.4–4.5). The sources of this free acidity differ among sites and appear to be correlated to the different land-uses. The composition of rainwater appeared to be controlled mostly by three sources: soil dust, sugar cane burning and industrial emissions.  相似文献   

16.
The application of advanced oxidation process (AOP) in the treatment of wastewater contaminated with oil was investigated in this study. The AOP investigated is the homogeneous photo-Fenton (UV/H2O2/Fe+2) process. The reaction is influenced by the input concentration of hydrogen peroxide H2O2, amount of the iron catalyst Fe+2, pH, temperature, irradiation time, and concentration of oil in the wastewater. The removal efficiency for the used system at the optimal operational parameters (H2O2?=?400 mg/L, Fe+2?=?40 mg/L, pH?=?3, irradiation time?=?150 min, and temperature?=?30 °C) for 1,000 mg/L oil load was found to be 72 %. The study examined the implementation of artificial neural network (ANN) for the prediction and simulation of oil degradation in aqueous solution by photo-Fenton process. The multilayered feed-forward networks were trained by using a backpropagation algorithm; a three-layer network with 22 neurons in the hidden layer gave optimal results. The results show that the ANN model can predict the experimental results with high correlation coefficient (R 2?=?0.9949). The sensitivity analysis showed that all studied variables (H2O2, Fe+2, pH, irradiation time, temperature, and oil concentration) have strong effect on the oil degradation. The pH was found to be the most influential parameter with relative importance of 20.6 %.  相似文献   

17.
The ozonolysis of isobutene and isoprene was performed in a 570 ℓ static reactor at 295 K and 730 Torr synthetic air in the presence and absence of water vapour, with the reactant concentration ranges of 1–6 ppmv. Products were analysed by a combination of FTIR spectroscopy, GC-FID, and HPLC. For both alkenes, the yields of H2O2 and the primary carbonyl products (acetone for isobutene, methacrolein and methylvinyl ketone for isoprene) increased under humid conditions. In the isoprene ozonolysis, the H2O2 yields relative to the O3 conversion were, as determined from the initial rate of the formation, 1 and 9% for dry and humid conditions, respectively. The increase in its yield under the humid conditions was correlated with the sum of the increase in the yields of methacrolein and methylvinyl ketone (∼13%). This was explained by rapid decomposition of the transient α-hydroxy hydroperoxides formed in the reaction of H2O with the two stabilised C4 Criegee intermediates. Atmospheric relevance of the results is discussed.  相似文献   

18.
The principle of this detector is based on the measurement of the intensity of the ultraviolet fluorescence of SO2 produced by absorption of the Zn 2138 Å or Cd 2288 Å line. The fluorescence intensity was found to be linear from 0.1 to 500 ppm of SO2 in air with the Zn lamp and from 0.1 to 1600 ppm with the Cd lamp. The detection limit at present is about 20 ppb. There is no detectable interference from O3, H2S, NO2, CO2, CO, or H2, although the presence of a large concentration of CS2 (500 times as much as SO2) NO (500 times) or C2H4 (4000 times) interferes with the measurement. The presence of 2% H20 reduces the signal by 25%, while up to 1 % CH4 has almost no effect.  相似文献   

19.
The degradation of organic matter in peat bogs is complex and not yet well understood. Recent investigations of the trace gases CO2 and CH4 focussed on the impact of these greenhouse gases on global warming. However, there have to be metabolic intermediates between complex organic structures (i.e., humic acids) and gaseous end products (CH4, CO2, N2, NOx and H2S) other than water-soluble substances (i.e., aromatic acids, amino acids, fatty acids). Deoxygenation during microbial decomposition of plant material also produces anoxic conditions that favor the formation of kinetically stable hydrocarbons. In this study, volatile organic substances (VOS) in peat bogs were investigated using two techniques: purge-and-trap and closed-loop stripping. Coupled gas chromatography–mass spectroscopy analysis revealed mainly branched hydrocarbons (C8H18) in concentrations up to 260 nM in peat pore-water. Additionally, alkylated benzenes were found in concentrations of up to 464 nM, in the peat pore-water, and up to 23 pptv in the headspace of peat cores. However, one-third of all the compounds in the complex VOS-fraction extracted from the peat system remain to be identified, especially those substances containing oxygen.  相似文献   

20.
Hara J 《Chemosphere》2011,82(9):1308-1313
The degradation of dieldrin by ferric sulphide (FeS2) in aqueous solution was investigated when shielded against sunlight. An oxidative dechlorination process was observed under aerobic and anaerobic conditions; oxygen volume changed the degradation rate of dieldrin and the generation rate of reaction products. The dechlorination rate under microaerophilic conditions was fastest among the anaerobic to air oxygen concentrations. For this experiment, over 99% of the dieldrin was degraded, and 90% of the released chloride was detected after 30 d under 10 μmol oxygen. The major reaction products were different depending on the dose of oxygen. In the case of aerobic conditions, low molecular weight organic acids, such as formic acid, lactic acid, and oxalic acid, were generated as major reaction products. However, under anaerobic conditions, C16H22O4 (dibutyl phthalate) and C6H13ClO (3-chloro-4-methyl-2-pentanol) were detected as reaction intermediates, and small amounts of succinic acid, malonic acid, and formic acid were also generated. These reactions proceed by FeS2 interface reactions with H2O under anaerobic condition, or O2 under aerobic condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号