首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Müllerian co-mimics are aposematic species that resemble each other; sharing a warning signal is thought to be mutually beneficial for the co-mimics by reducing per capita predation risk. In Batesian mimicry, edible mimics avoid predation by resembling an aposematic model species. The protection of both the model and the mimic is weakened when the mimics are abundant compared to the models. The quasi-Batesian view suggests that defended (Müllerian) co-mimics, when unequal in their defences, could also show a Batesian-like trend of increasing mortality with increasing abundance of a less defended “mimic”. We manipulated frequencies of unequally distasteful artificial co-mimics that were prey for great tits. The co-mimics had different signals (imperfect mimicry) but were equally preferred by the birds when palatable. Unexpectedly, when unpalatable, one of the signals was easier for the birds to learn to avoid. Consequently, during predator learning, the signal design of the prey strongly affected mortality of the co-mimics; there was an interaction between the signal and frequency treatments, but increasing the frequency of a less defended “mimic” did not increase co-mimic mortalities as predicted. In contrast, in a memory test that followed, the effect of signal design disappeared; if the birds had experienced high frequency of “mimics” during learning, co-mimic mortalities did subsequently increase. Since the effect of co-mimic frequencies on mortalities changed depending on the signal design of the prey and predator experience, the results suggest that mimetic relationship may be an unpredictable interplay of several factors in addition to taste and abundance.  相似文献   

2.
Aposematic species advertise their unpalatability to potential predators using conspicuous warning colouration. The initial evolution of aposematism is thought to occur by warningly coloured mutants emerging in an already unpalatable cryptic species. However, possessing defence chemicals is often costly, and it is difficult to understand what the selective benefits might be for a mutation causing its bearer to be defended in a population of otherwise palatable cryptic prey. One solution to this problem is that chemically defended individuals are tasted and rejected by predators, and are, therefore, more likely to survive predatory attacks than undefended individuals. Using naïve domestic chicks Gallus gallus domesticus as predators and cryptic green chick crumbs as prey, we asked whether the accuracy with which birds discriminated between palatable and unpalatable prey was affected by the palatability of the unpalatable prey (moderately or highly defended), or their frequency in the population (10 or 25%). Birds could discriminate between green prey on the basis of their defences, and showed better discrimination between palatable and unpalatable prey when defended crumbs were highly unpalatable, compared to when they were moderately unpalatable. Although there was no detectable effect of the frequency of unpalatable prey in the population on predator taste-rejection behaviour in our main analysis, frequency did appear to affect the strategies that birds used in their foraging decisions when prey were only moderately unpalatable. How birds used taste to reject prey also suggests that birds may be able to monitor and regulate their chemical intake according to the frequency and defence levels of the unpalatable prey. Taken together, these results show that avian predators can generate selection for unpalatability in cryptic prey by sampling and taste-rejecting prey, but that a relatively large chemical difference between palatable and unpalatable prey may be necessary before unpalatable prey can enjoy a selective advantage. The exact nature of this evolutionary dynamic will depend on other environmental factors, such as defence costs and prey availability, but it provides a mechanism by which defences can evolve in a cryptic population.  相似文献   

3.
Bumblebees have been found to observe and copy the behaviour of others with regard to floral choices, particularly when investigating novel flower types. They can also learn to make nectar-robbing holes in flowers as a result of encountering them. Here, we investigate handedness in nectar-robbing bumblebees feeding on Rhinanthus minor, a flower that can be robbed from either the right-hand side or the left-hand side. We studied numerous patches of R. minor spread across an alpine landscape; each patch tended to be robbed on either the right or the left. The intensity of side bias increased through the season and was strongest in the most heavily robbed patches. We suggest that bees within patches learn robbing strategies (including handedness) from one another, either by direct observation or from experience with the location of holes, leading to rapid frequency-dependent selection for a common strategy. Primary robbing was predominantly carried out not only by a specialist robbing species, Bombus wurflenii, but also by Bombus lucorum, a widespread generalist. Both species adopted the same handedness within particular flower patches, providing the first evidence for social learning crossing the species boundary in wild insects.  相似文献   

4.
Summary Queen bumblebees (Bombus appositus) leave nectar behind in Delphinium nelsoni flowers with high-standing crops of nectar. Bumblebees deplete flowers in areas with lower-standing crops. Residual volumes predicted by an optimal feeding hypothesis agree with field measurements.  相似文献   

5.
Multimodal defensive displays are commonplace, with prey combining conspicuous coloration, sounds, odours and other chemical emissions to deter predators. These components can signal to predators in multiple signal modalities to warn them that prey are defended. The aim of our review is to examine the form and function of multimodal warning displays. Data collected from the literature on multimodal insect warning displays show the degree of complexity and diversity that needs to be explained, and we identify patterns in the data that may be worthy of more rigorous investigation. We also provide a theoretical framework for the study of multimodal warning displays, and evaluate the evidence for different functional hypotheses that can explain their widespread evolution. Our review highlights that whilst multimodal warning displays are well documented, particularly in insects, we lack a good understanding of their function in natural predator–prey systems.  相似文献   

6.
Animals utilise various strategies to reduce the risk of predation, including camouflage, warning colours and mimicry, and many of these protective signals promote avoidance behaviour in predators. For example, various species possess paired circular ‘eyespots’, which startle or intimidate predators, preventing or halting an attack. However, little is known of how the efficacy of such signals relates to the context in which they are found, and no studies have tested the relative effectiveness of anti-predator signals when on otherwise camouflaged and conspicuous prey. We find that the protective value of conspicuous wing spots, placed on artificial moth-like targets presented to wild birds in the field, is strongly affected by the attributes of the prey ‘animal’ on which they are found. Wing spots reduced predation when on conspicuous prey but were rendered ineffective when on otherwise camouflaged targets, indeed they increased the risk of predation compared to non-marked camouflaged controls. These results demonstrate how different anti-predator strategies may interact, and that protective signals can switch from being beneficial to costly under different contexts.  相似文献   

7.
In polygynous species, the adults are faced with a dilemma during chick rearing. Males must decide how to distribute food between their females and food allocation patterns are often highly unequal. In turn, the females that receive less food from males have to decide how much time to invest in additional hunting. If they spend more time hunting, then they leave their young exposed to weather and predators. However, if they stay at the nest, they increase the risk of their chicks starving. One way that birds may compensate for reduced provisioning is by increasing the size of prey caught. We tested this hypothesis by comparing prey deliveries to nests of hen harriers, Circus cyaneus, with females of different breeding status. As expected, male harriers delivered less food items to the nests of polygynous females, and especially their secondary, or β females. However, both sexes were able to compensate by delivering larger items and there was no difference in the overall mass of food delivered to nests. Moreover, females spent a similar amount of time at the nest, irrespective of status, and there were no overall differences in breeding success. Our results show that polygynous female harriers can compensate for the costs of polygyny, but we suggest that their ability to do so will vary according to the abundance of both large prey and predators.  相似文献   

8.
Summary This paper describes the influence on predator behaviour, and the survival of an aposematic aphid, Aphis nerii, in comparison with a palatable, cryptic aphid, Acyrthosiphon pisum, when offered to two predators with different foraging tactics. The experiments were designed to test Fisher's (1930) suggestion that aposematism could evolve by kin selection, since aposematic animals often occur in aggregations of relatives. Initially, spiders (Zygiella x-notata) and birds (Parus major) killed high proportions of distasteful A. nerii (60% and 54% respectively). With experience, the predators killed and ate fewer A. nerii. The decreasing mortality of A. nerii after initial encounters with predators, coupled with its apparently obligate parthenogenesis, indicate that the evolution of aposematism in this soft-bodied insect is consistent with kin selection.  相似文献   

9.
Bumblebees of the subgenus Psithyrus are obligate social parasites of Bombus colonies. Parasitic females enter host colonies and replace the host queen. The offspring of the parasite is reared by the host workers. Females locate host colonies by nest searching flights and recognition of species-specific nest odours at the entrance. We investigated inter- and intraspecific odour variation of 45 hydrocarbons of nests of potential hosts by coupled gas chromatography/mass spectrometry and tested the preferences of the parasite females of B. bohemicus and B. rupestris for these mixtures in Y-olfactometer choice tests. Interspecific and intracolonial differences in the odour bouquets of the host species were found to be predominantly due to different patterns of alkenes. Furthermore, we found intercolonial differences within the single species. In behavioural assays, females of the two species showed different preferences for the offered nest odours, implicating different host spectra. Bombus rupestris showed a clear preference for the scent of its host, B. lapidarius. Bombus bohemicus females were attracted by B. terrestris, B. lucorum, and B. cryptarum in a similar manner. The results show that volatile signals enable parasite females to discriminate between potential host species.  相似文献   

10.
Malaria and risk of predation: a comparative study of birds   总被引:5,自引:0,他引:5  
Møller AP  Nielsen JT 《Ecology》2007,88(4):871-881
Predators have been hypothesized to prey on individuals in a poor state of health, although this hypothesis has only rarely been examined. We used extensive data on prey abundance and availability from two long-term studies of the European Sparrowhawk (Accipiter nisus) and the Eurasian Goshawk (Accipiter gentilis) to quantify the relationship between predation risk of different prey species and infection with malaria and other protozoan blood parasites. Using a total of 31 745 prey individuals of 65 species of birds from 1709 nests during 1977-1997 for the Sparrowhawk and a total of 21 818 prey individuals of 76 species of birds from 1480 nests for the Goshawk during 1977-2004, we show that prey species with a high prevalence of blood parasites had higher risks of predation than species with a low prevalence. That was also the case when a number of confounding variables of prey species, such as body mass, breeding sociality, sexual dichromatism, and similarity among species in risk of predation due to common descent, were controlled in comparative analyses of standardized linear contrasts. Prevalence of the genera Haemoproteus, Leucocytozoon, Plasmodium, and Trypanosoma were correlated with each other, and we partitioned out the independent effects of different protozoan genera on predation risk in comparative analyses. Prevalence of Haemoproteus, Leucocytozoon, and Plasmodium accounted for interspecific variation in predation risk for the two raptors. These findings suggest that predation is an important factor affecting parasite-host dynamics because predators tend to prey on hosts that are more likely to be infected, thereby reducing the transmission success of parasites. Furthermore, this study demonstrates that protozoan infections are a common cause of death for hosts mediated by increased risk of predation.  相似文献   

11.
Associations in which a more vulnerable species gains protection by seeking out the company of a pugnacious “protector” species capable of deterring predators are documented among mixed-species groups from various taxa, but experimental studies are rare. We consider an unusual arthropod-based example in which the associate species, Phintella piantensis, is a jumping spider (Salticidae) that associates with the territorial weaver ant Oecophylla smaragdina, which in turn is a potential predator of Phintella. However, the predator we consider in this mixed-species association is Scytodes sp., a spitting spider (Scytodae) that often targets salticids as prey. Scytodes adopts a strategy of building its web over salticid nests and then preying on resident salticids when they leave or return to their nests. Our experiments show that, on the basis of olfactory cues, Scytodes is deterred from the vicinity of O. smaragdina. Phintella builds dense ant-proof nests to minimize the risk of being killed by Oecophylla, and we show that olfactory as well as visual cues of ants elicit nest building by Phintella. We propose that Phintella actively chooses to situate nests in the vicinity of weaver ants as defense against a specific ant-averse predator that singles out salticids as preferred prey.  相似文献   

12.
Bumblebees (Bombus terrestris) are attracted to those particular inflorescences where other bees are already foraging, a process known as local enhancement. Here, we use a quantitative analysis of learning in a foraging task to illustrate that this attraction can lead bees to learn more quickly which flower species are rewarding if they forage in the company of experienced conspecifics. This effect can also be elicited by model bees, rather than live demonstrators. We also show that local enhancement in bumblebees most likely reflects a general attraction to conspecifics that is not limited to a foraging context. Based on the widespread occurrence of both local enhancement and associative learning in the invertebrates, we suggest that social influences on learning in this group may be more common than the current literature would suggest and that invertebrates may provide a useful model for understanding how learning processes based on social information evolve.  相似文献   

13.
Bumblebees forage uninterrupted for long periods of time because they are not distracted by sex or territorial defense and have few predators. This has led to a long running debate about whether bumblebees forage optimally. This debate has been enriched by the possibility that bumblebees foraging within clover patches have flight patterns that can be approximated by Lévy flights. Such flight patterns optimise the success of random searches. Bumblebees foraging within a flower patch tend to approach the nearest flower but then often depart without landing or probing it if it has been visited previously; unvisited flowers are not rejected in this manner. Here, this foraging behaviour has been replicated in numerical simulations. Lévy flight patterns are found to be an inconsequential emergent property of a bumblebees’ foraging behaviour. Lévy flights are predicted to emerge when bees reject at least 99% of previously visited flowers. A foraging bumblebee can certainly empty a clover flower head of nectar in one visit, but lower rates of rejection are observed for many other flowers. These findings suggest that Lévy flight patterns in foraging bumblebees are rare and specific to a few flower species and that if they exist, then they are not part of an innate, evolved optimal searching strategy.  相似文献   

14.
Summary Several aspects of nest defence behavior were investigated in song sparrows (Melospiza melodia) in eastern Ontario. Two independent tests were made of the hypothesis that the increase in nest defence observed through a nesting attempt is due to the birds becoming familiar with the nest threat, rather than because the nest contents increase in value to the parents. Neither test supported the hypothesis. As predicted by life history theory for species with age-independent mortality, males did not defend their nest more vigorously as they become older. Parents defended their nests less vigorously through the breeding season, contrary to the expected pattern of increased nest defence in response to declining renesting potential. This result may be attributable to a decline in offspring value through the breeding season. Nest defence behavior of mated individuals was positively correlated, independent of factors such as offspring age, renesting potential and brood size. From this result it is proposed that a source of variation in nest defence behavior may be individuals basing their own response on their mate's response in a positive feedback fashion. Males defended nests less vigorously than females, consistent with the expectation that males have lower certainty of parentage in the offspring. It is proposed that variation in paternal uncertainty could contribute to the unexplained variation reported in nest defence studies.  相似文献   

15.
A reduced predation risk is considered to be a major adaptive advantage of sociality. While most studies are concerned with non-predatory prey species, group-living predators are likely to face similar threats from higher-order predators. We studied the relationship between group size and predation risk in the subsocial crab spider Diaea ergandros by testing predictions from theoretical models including attack abatement as well as the formation of protective retreats. In a field survey, we found predatory clubionid spiders in 35 % of the D. ergandros nests and as predicted, nest size did not correlate with predator presence. In a subsequent laboratory experiment, we observed survival probability, nest construction activity and feeding behaviour including weight development between groups of different sizes as well as in the absence or presence of a predator. Large groups had an advantage in terms of survival and growth compared to smaller groups or single individuals. They also built significantly larger nests than smaller groups, supporting the idea of protective retreat formation being an adaptive benefit to group living. Even though clubionids did attack D. ergandros, they did not significantly affect overall mortality of D. ergandros. The feeding experiment showed that spiders fed on a larger proportion of flies in the presence of a predator. However, these groups gained significantly less weight compared to the control groups, indicating that the potential predators not only act as predators but also as food competitors, constituting a twofold cost for D. ergandros.  相似文献   

16.
Females of Elasmucha grisea defend their eggs and small nymphs against invertebrate predators. Females sometimes guard their clutches side by side on the same birch leaf. We studied benefits of this joint guarding both in the field and in the laboratory. We found that adjacent females had significantly larger clutches than solitary females. In the laboratory, we studied the effectiveness of joint versus single defence against ant (Formica uralensis) predators. We established female pairs from initially singly guarding females by cutting off pieces of leaves with egg clutches and pasting them beside another female guarding her clutch. In the control group the females with their clutches were similarly cut off but these clutches were placed on another leaf without any female. The birch twigs where females guarded their clutches were placed in cages in close proximity to laboratory ant nests. In the experimental treatment, two females guarded their clutches together and at the same nest there was another birch twig without a female. In the control treatment two twigs with one female on each were placed close to another ant nest. Two females defended their clutches significantly more successfully, losing fewer eggs than did the single females. This primitive form of female sociality in parent bugs resembles colonial nesting in birds, where communal defence is also important. However, to our knowledge this is the first experiment where the benefit of joint guarding has been tested directly by manipulating the size of the breeding group rather than by measuring the risk of predation in groups of different size.  相似文献   

17.
Aposematic species exploit the ability of predators to associate, for example, conspicuous colouration with the unprofitability of prey. We tested the importance of colour for avoidance learning, memory and generalisation in wild-caught great tits (Parus major). First, we determined the birds’ initial colour preferences for red, yellow, orange and grey artificial prey items. The birds showed some preferences, as they were more willing to eat grey prey as their first choice, but these were not strong preferences. We then trained birds to discriminate red, yellow or variable (red and yellow) signals from grey where colours signalled palatable and unpalatable food. In general, the birds learned the discrimination task equally well, irrespective of which colours signalled unpalatability, and subsequently remembered the distinction between previously palatable and previously unpalatable colours in the memorability test. We did not find strong evidence that variability in the signal affected learning or memory. Our results suggest that, in a task where birds must discriminate between palatable and unpalatable prey, it does not matter which specific colour signals unpalatability, although this might be context-dependent. To study whether training also affects responses to unconditioned stimuli, we included orange prey items in the memorability test. Although orange had been palatable in the initial preference test, the birds ate fewer orange prey items after they had been trained to avoid red, yellow or both colours (variable signal) as unpalatable prey, but did not change their preference when trained that these colourful signals were palatable. This indicates that generalisation occurred more readily after a negative experience than a positive experience, a situation that would potentially allow imperfect mimicry to occur.  相似文献   

18.
Predators hunting for cryptic prey use search images, but how do prey search for cryptic predators? We address this question using the interaction between bumblebees and the colour-changing crab spider Misumena vatia which can camouflage itself on some flowers. In laboratory experiments, we exposed bumblebees to an array of flowers concealing robotic predators (a trapping mechanism combined with a 3D life-sized model of a crab spider or a circle). Groups of bees were trained to avoid either cryptic yellow spiders or yellow circles (equal area to the spiders) or remained predator naive. The bees were then exposed to a new patch of white flowers containing some cryptic predators (either white spiders, white circles or a mixture of both). We monitored individual foraging choices and used a 3D video tracking system to quantify the bees’ flight behaviour. The bees trained to avoid cryptic spiders, chose 40% fewer spider-harbouring flowers than expected by chance, but were indifferent to cryptic circles. They also aborted a higher proportion of landings on flowers harbouring spiders, ultimately feeding from half as many ‘dangerous’ flowers as naive bees. Previous encounters with cryptic spiders also influenced the flight behaviour of bees in the new flower patch. Experienced bees spent more time inspecting the flowers they chose to reject (both with and without concealed spiders) and scanned from side to side more in front of the flowers to facilitate predator detection. We conclude that bees disentangle shape from colour cues and thus can form a generalised search image for spider shapes, independent of colour.  相似文献   

19.
Predation and competition are important biotic interactions influencing populations and communities in marine soft sediments. Sea stars are ubiquitous predators with diverse diets that play functionally important roles in the benthos. In this study, we examined the diet and the ecological roles of three sympatric species of the genus Astropecten (A. aranciacus, A. irregularis pentacanthus and A. platyacanthus). The study was performed between March 2010 and February 2011 on the Maresme coast (northwestern Mediterranean Sea). Results showed that their main diet consisted on gastropods and bivalves, such as Glycymeris glycymeris, Callista chione, Gibbula guttadauri and Cyclope neritea. Food competition between species was avoided by partition of prey resources. Intraspecific differences in the dietary compositions between seasons were found, but not between size classes. Ontogenetic patterns of prey size consumption were recognized in the three species. A large diet overlap was detected between A. aranciacus and A. platyacanthus in winter, due to changes in prey availability. Nevertheless, the analysis of the infaunal community composition and stomach contents indicated that food selection was not associated with prey availability.  相似文献   

20.
A variety of studies have established the value of shaded coffee plantations as habitat for birds. While the value of birds as biological controls in coffee has received some attention, the interactions between birds and other predators of insects have not been tested. We used exclosures to examine the effects of vertebrate predators on the arthropods associated with coffee, in particular the coffee leafminer (Leucoptera coffeella) and the flatid planthopper Petrusa epilepsis, in a shaded coffee plantation in Puerto Rico. We used a 2 x 2 factorial design with four treatments: exclusion of birds, lizards, birds and lizards, and control (no exclusion). Abundance of insects > 5 mm increased when birds or both birds and lizards were removed. Birds and lizards had an additive effect for insects < 5 mm and for all insects combined. Coffee leafminers showed a weak response to removal of predators while planthopper abundance increased significantly in the absence of avian predators. Arthropod predators and parasitoids did not differ significantly between treatments. Our findings suggest that vertebrate insectivores have an additive effect on insects in coffee and may help control abundances of some coffee pests. Equally important, we present evidence suggesting that they do not interfere with other known natural enemies of coffee pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号