首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Magnitudes of land cover changes nowadays can be assessed properly, but their driving forces are subject to many discussions. Next to the accepted role of human influence, the impact of natural climate variability is often neglected. In this paper, the impact of rainfall variability on land cover changes (LCC) is investigated for the western escarpment of the Raya Graben along the northern Ethiopian Rift Valley. First, LCC between 2000 and 2014 were analysed at specific time steps using Landsat imagery. Based on the obtained LCC maps, the link was set with rainfall variability, obtained by means of the satellite-derived rainfall estimates (RFEs) from NOAA-CPC. After a correction by the incorporation of local meteorological station data, these estimates prove to be good estimators for the actual amount of precipitation (ρ RFE1.0 = 0.85, p = 0.00, n = 126; ρ RFE2.0 = 0.76, p = 0.00, n = 934). By performing several linear regression analyses, a significant positive relationship between the precipitation parameter DIFF 5Y (i.e. the at-RFE pixel scale difference in five-year average annual precipitation for the two periods preceding the land cover maps) and the changes in the woody vegetation cover was found (standardised regression coefficient β = 0.23, p = 0.02, n = 108). Despite the dominance of direct human impact, further greening of the study area can be expected for the future concomitantly to a wetter climate, if all other factors remain constant.  相似文献   

2.
This study was conducted to examine perceptions of the farmers and key informants on the use of low-quality irrigation water for vegetable production in urban and peri-urban areas in Morogoro, Tanzania. The methods used to collect data were farmer surveys (n = 60), focus group discussions (n = 4) and key informants interviews (n = 15). The results showed that the respondents had a positive perception on using low-quality irrigation water for vegetable production. The reported benefits include availability of water throughout the year, highest soil and crop nutrients in irrigation water, less costs of buying commercial fertilizers, vegetable production all year round, sustainable income generation from selling vegetables and also jobs creation in the community among farmers and vegetable sellers. Findings from Mann–Whitney U test and Kruskal–Wallis test score on farmers perception scales indicate an association between the source of low-quality water used and the respondents’ sex. Accordingly, female farmers had higher positive perception on the benefits of low-quality water compared to male farmers. Higher perception score was also observed among farmers who used polluted river water in irrigation vegetable production compared to farmers who used wastewater. Since low-quality irrigation water is a good strategy of coping with scarcity of freshwater for communities which have no alternative source of irrigation water, the study recommends multi-sectorial agencies across the country to be involved in formulating policies and creating health promotion awareness for safe use of low-quality water for benefit maximization and health risk reduction.  相似文献   

3.
This paper examines a spatial pattern of annual, seasonal and monthly rainfall trends in Serbia. The study used data from 63 weather stations between the period of 1961–2009. The rainfall series was examined by applying the nonparametric method of the Mann–Kendall test and Sen’s method to determine the significance and magnitude of the trends. Significant trends have not been detected for the whole country at an annual scale. Seasonal trends at the confidence level of 97.5 %, however, indicate a slight decrease in winter (5 stations out of 63) and spring (7 stations out of 63) precipitation and an increase in autumn precipitation (10 stations out of 63). Results for monthly rainfall trends also generally showed a nonsignificant trend with the exception of a negative trend in May (6 stations out of 63) and positive trend for October (9 stations out of 63). Calculated global autocorrelation statistics (Moran’s I) indicate a random spatial pattern of rainfall trends on annual, seasonal and monthly timescales with exceptions for March, June and November. Overall, results suggest that only weak, mostly nonsignificant trends are present in Serbia in the period 1961–2009.  相似文献   

4.
River deltas all over the world are sinking beneath sea-level rise, causing significant threats to natural and social systems. This is due to the combined effects of anthropogenic changes to sediment supply and river flow, subsidence, and sea-level rise, posing an immediate threat to the 500–1,000 million residents, many in megacities that live on deltaic coasts. The Mississippi River Deltaic Plain (MRDP) provides examples for many of the functions and feedbacks, regarding how human river management has impacted source-sink processes in coastal deltaic basins, resulting in human settlements more at risk to coastal storms. The survival of human settlement on the MRDP is arguably coupled to a shifting mass balance between a deltaic landscape occupied by either land built by the Mississippi River or water occupied by the Gulf of Mexico. We developed an approach to compare 50 % L:W isopleths (L:W is ratio of land to water) across the Atchafalaya and Terrebonne Basins to test landscape behavior over the last six decades to measure delta instability in coastal deltaic basins as a function of reduced sediment supply from river flooding. The Atchafalaya Basin, with continued sediment delivery, compared to Terrebonne Basin, with reduced river inputs, allow us to test assumptions of how coastal deltaic basins respond to river management over the last 75 years by analyzing landward migration rate of 50 % L:W isopleths between 1932 and 2010. The average landward migration for Terrebonne Basin was nearly 17,000 m (17 km) compared to only 22 m in Atchafalaya Basin over the last 78 years (p < 0.001), resulting in migration rates of 218 m/year (0.22 km/year) and <0.5 m/year, respectively. In addition, freshwater vegetation expanded in Atchafalaya Basin since 1949 compared to migration of intermediate and brackish marshes landward in the Terrebonne Basin. Changes in salt marsh vegetation patterns were very distinct in these two basins with gain of 25 % in the Terrebonne Basin compared to 90 % decrease in the Atchafalaya Basin since 1949. These shifts in vegetation types as L:W ratio decreases with reduced sediment input and increase in salinity also coincide with an increase in wind fetch in Terrebonne Bay. In the upper Terrebonne Bay, where the largest landward migration of the 50 % L:W ratio isopleth occurred, we estimate that the wave power has increased by 50–100 % from 1932 to 2010, as the bathymetric and topographic conditions changed, and increase in maximum storm-surge height also increased owing to the landward migration of the L:W ratio isopleth. We argue that this balance of land relative to water in this delta provides a much clearer understanding of increased flood risk from tropical cyclones rather than just estimates of areal land loss. We describe how coastal deltaic basins of the MRDP can be used as experimental landscapes to provide insights into how varying degrees of sediment delivery to coastal deltaic floodplains change flooding risks of a sinking delta using landward migrations of 50 % L:W isopleths. The nonlinear response of migrating L:W isopleths as wind fetch increases is a critical feedback effect that should influence human river-management decisions in deltaic coast. Changes in land area alone do not capture how corresponding landscape degradation and increased water area can lead to exponential increase in flood risk to human populations in low-lying coastal regions. Reduced land formation in coastal deltaic basins (measured by changes in the land:water ratio) can contribute significantly to increasing flood risks by removing the negative feedback of wetlands on wave and storm-surge that occur during extreme weather events. Increased flood risks will promote population migration as human risks associated with living in a deltaic landscape increase, as land is submerged and coastal inundation threats rise. These system linkages in dynamic deltaic coasts define a balance of river management and human settlement dependent on a certain level of land area within coastal deltaic basins (L).  相似文献   

5.
This study evaluates variability and trends in rainfall amount and extreme event indices in the Omo-Ghibe River Basin of Ethiopia based on observed records from six stations. Nine daily rainfall indices were defined and analyzed based on the World Meteorological Organization guideline. Sen’s slope estimator and Mann–Kendall’s trend test were used to determine the magnitude and statistical significance of the rainfall changes, respectively. The results show complex patterns of rainfall variability and local-scale trends. Statistically significant increasing changes were observed at Key Afer for most of the indices. On the other hand, the increasing trends in the number of very heavy rainfall events (R20 mm) were statistically significant at three (Jinka, Key Afer and Wolaita Sodo) out of the six stations. On the other hand, significant decreasing trends were found at Sawla for the maximum one day (Rx1 day) and the number of very heavy rainfall event (R20 mm). No systematic trends were found for the number of wet and dry day-related rainfall indices. However, the annual total rainfall averaged for the entire basin and at two stations (Key Afer and Wolaita Sodo) showed statistically significant increasing trends, both at the 0.01 level. Generally, the results of this study contradict with previous studies that reported significant declining trends in annual and Kiremt (main rainy season) rainfall amounts over this part of the country, suggesting the reviving of rainfall during the last two decades. Also, the results of this study agree with previous researches that reported the absence of systematic patterns of trends in daily rainfall indices in different parts of the country. The study has important implications for an effective management of water resources and climate risk management particularly in view of the fact that five hydropower plants and large-scale sugarcane plantations are planned, and some are under construction in the basin.  相似文献   

6.
The Central Indian Highland landscape (CIHL) represents a complex, diverse, and highly human-modified system. Nearly half the landscape is cropland, yet it hosts 21 protected areas surrounded and connected by forests. Changing farming practices with increasing access to irrigation might alter this intensifying landscape in the near future particularly in light of weather variability. We analyzed a decade of remote sensing data for cropping patterns and climatic factors combined with census data for irrigation and demographic factors to understand winter cropping trajectories in the CIHL. We quantified ‘productive cropped area’ (PCA), defined as the area with planted crop that is green at the peak of the winter growing season. We find three primary trajectories in PCA—increasing, fluctuating, and decreasing. The most dominant trend is fluctuating PCA in two-thirds of the districts, ranging from ~2.11 million to ~3.73 million ha between 2001 and 2013, which is associated with village-level access to irrigation and local labor dynamics. In 58 % of all districts, clay soils were associated with winter cropping (p < 0.05). Increasing irrigation is associated with increased winter PCA in most (94 %) districts (p < 0.00001). We find strong negative association between PCA and land surface temperature (LST) in most (66 %) districts (p < 0.01). LST closely corresponds to daytime mean air temperature (p < 0.001) for available meteorological stations. Fine-scale meteorological and socioeconomic data, however, are needed to further disentangle impacts of these factors on PCA in this landscape.  相似文献   

7.
In 2010, the global burden of foodborne diseases was 33 million Disability-adjusted life years, and 40 % of this burden was for children under 5 years old (Havelaar et al. 2015). Our study site was informal public markets within Mzuzu, Malawi, visited between September and December 2015, during the dry season. From these markets, fresh vegetables, leafy greens (n = 85), tomato (n = 85), and green pepper (n = 35) were analyzed for Escherichia coli. The prevalence of E. coli was highest on leafy greens; it was found in 74 (87 %) of the 85 samples. The prevalence of E. coli in green peppers was found in 2 (6 %) of the 35 samples. The prevalence of E. coli was lowest on tomatoes; it was found in only 1 (1 %) of the 85 samples. The lack of adequate water and sanitation infrastructure in market areas may be contributing to the bacteriological contamination of fresh produce. Providing venders with free access to market area toilets containing hand-washing facilities with soap and wash water with a chlorine solution may reduce bacterial contamination of fresh produce. Universal and sustainable access to water and sanitation services must include informal public market areas to reduce diarrheal diseases transmitted through food within Sub-Saharan Africa countries.  相似文献   

8.
Despite there being considerable research and knowledge surrounding the risks of climate change on agricultural productivity, fewer studies have examined risks from a whole-of-chain perspective (i.e. from producer to consumer) and the perceptions of consumers about the climate adaptation strategies of food businesses. This paper presents the findings of a survey of 1532 Australian consumers and how they might respond to a food company’s climate adaptation strategy. Three respondent archetypes, ‘Eco-warriors’ (n = 557), ‘Undecideds’ (n = 600) and ‘Abdicators’ (n = 375), were identified based on their perceptions of risks associated with climate change and their attitudes towards climate adaptation. Further analysis was carried out to understand how each group of respondents would respond to adaptation strategies employed by food companies. Based on the findings of this study, two main challenges are presented for food value chains: (1) translating consumer needs and preferences to niche opportunities arising from adaptation and (2) understanding how best to communicate adaptation benefits based on varying attitudes and information needs. By addressing these challenges, synergies between adaptation goals and competitive strategies in food value chains may be achieved.  相似文献   

9.
According to observed twentieth century temperature trends and twenty-first century climate model projections, the region that encompasses the eastern Mediterranean and the Middle East (EMME) is identified as a climate change hot spot. We extend previous studies by a comprehensive climatology of heat waves in the EMME based on regional climate model simulations for the recent past and the end of the twenty-first century. A percentile-based definition of heat waves is used to account for local climatic conditions. Spatial patterns of several heat wave properties are assessed and associated with atmospheric circulation regimes over specific locations. To cover a range of possible future climates, we use three SRES emission scenarios. According to our results, all indices that characterize heat wave severity will strongly increase compared with the control period of 1961–1990. The northern part of the EMME could be exposed to increased heat wave amplitudes by 6–10 °C, and the southern part may experience 2–3 months more combined hot days and tropical nights. Heat wave peak temperatures will be higher due to the overall mean warming as well as stronger summer anticyclonic conditions. The projected changes will affect human health and the environment in multiple ways and call for impact studies to support the development of adaptation strategies.  相似文献   

10.
As climate is an important driver of vegetation distribution, climate change represents an important challenge to forestry. We (1) identify prevailing bioclimatic conditions for 49 relevant forest species in Portugal and (2) assess future shifts under climate change scenarios. We compute two bioclimatic indices (aridity and thermicity) and a new composite index, at ~1 km spatial resolution, and overlap with the species’ current ranges. Locations are based on a digital inventory, while climate parameters for both recent-past (1950–2000) and future climates (2041–2060), under RCP4.5 and RCP8.5, are provided by a multi-model ensemble of climate simulations. Results for future scenarios highlight an overall warming and drying trend. Supramediterranean and mesomediterranean climates will be significantly reduced, while thermomediterranean climates will dramatically increase, from their almost absence in current conditions to an area coverage of ~54 % in 2041–2060 for RCP8.5. There is also a clear shift from hyper-humid and humid to sub-humid and from the latter to semi-arid climates (area coverage of ~13 % in 2041–2060 for RCP8.5). Lower thermomediterranean sub-humid to semi-arid zones will cover the southern half of Portugal. These projections identify the most vulnerable (e.g. Betula pubescens, Quercus pyrenaica and Castanea sativa) and the most adapted (e.g. Quercus suber, Q. rotundifolia, Ceratonia siliqua, Pinus pinea, Quercus coccifera) species in future climates. Current bioclimatic zones associated with Eucalyptus globulus and Pinus pinaster, economically relevant species, will be moderately reduced and relocated. Possible adaptation measures are discussed to improve forest resilience to climate change, while maintaining its economic and environmental benefits.  相似文献   

11.
Basic climatic parameters (annual average air temperature and annual amount of precipitation) over 12–25 years have been analyzed with regard to their values corresponding to different levels of abundance in three species of forest voles: Clethrionomys glareolus (in 11 areas of the species range), Cl. rutilus, and Cl. rufocanus (in three areas each). The results show that the abundance of all these species correlates significantly with fluctuations of annual average temperature, with the correlation being negative in Cl. glareolus and Cl. rufocanus but positive in Cl. rutilus. In addition, the abundance of Cl. rufocanus shows a significant correlation with annual precipitation. Voles inhabiting different geographic regions may reach high abundance under different conditions. As for the species range as a whole, however, Cl. glareolus is more ecologically flexible than the other two voles. This species is also more warmth- and moisture-loving, while Cl. rufocanus is more cold-loving and xerophilous, with Cl. rutilus occupying an intermediate position between them. Clethrionomys rutilus is most temperature-dependent and stenothermic among them, whereas Cl. glareolus is indifferent to the factors studied.  相似文献   

12.
Dyes and pigments are one of the major water pollutants and if not discharged properly cause ecological disturbance. Considering this, the current study investigates the application of thermal power plant by-product, i.e., fly ash for the elimination of a hazardous methylene blue dye from its synthetic aqueous solution. Experiments were conducted in batch mode to study the effect of pH, temperature, adsorbent dose and contact time. Highest dye removal (94.3%) was achieved at pH 10 using adsorbent dose of 10 g/L in 90 min of contact time at 40 °C. However, for cost-effective operation at neutral pH and room temperature (30 °C), it yields 89.3% dye removal having similar dose and contact time. Equilibrium isotherms for adsorption were analyzed by Langmuir and Freundlich, Temkin and Dubinin–Radushkevich isotherm equations. The results revealed that the best fit model of adsorption closely followed Langmuir adsorption. Based on adsorption isotherm models, thermodynamics parameters ΔG, ΔH and ΔS were calculated. The negative value of ΔG and ΔH revealed that adsorption process was exothermic, spontaneous and physical. The present work suggests that through simple process hydrothermally modified fly ash has the potential to be used as cost-effective and efficient adsorbent for the treatment of wastewater from textile industries.  相似文献   

13.
The topic of carbon sequestration in plants has received much attention recently due to concerns about global climate change, which is being exacerbated by deforestation. In the early days of the global bioenergy boom, the private sector and non-government organizations enthusiastically promoted the planting of Jatropha curcas L. as a key candidate shrub species for the production of bioenergy in West Africa. This study investigates the aboveground biomass production and carbon sequestration potential of J. curcas, which is already widely cultivated for the production of oil seeds, biodiesel and biokerosene. The specific objective is to use a destructive method to develop allometric prediction equations of the aboveground biomass production of J. curcas plantations. 38 J. curcas shrubs were harvested and weighed in order to estimate biomass production. These data were used to develop allometric equations for the estimation of wood, leaf and total aboveground biomass production. The best-fit models found for estimating shrub component biomass and total aboveground biomass production were of the power form. All of the regression equations relating the prediction of leaf biomass, wood biomass and total aboveground biomass with J. curcas diameter at 20 cm above the ground (D) were statistically significant (p < 0.001) and also presented the highest goodness of fit (high R 2). The aboveground biomass carbon content was estimated using the ash method. Carbon content in leaves and wood was, respectively, 48 and 54 %. The current established allometric equations can be helpful to provide a rapid estimation of the aboveground biomass and C stock for J. curcas biofuel projects in semi-arid conditions.  相似文献   

14.
Using the focusing event framework, a comprehensive analysis of private households’ and businesses’ preparedness was undertaken in the aftermath of the 2002 and 2006 flood events on the Elbe River in Germany. In August 2002, preparedness of households (n = 235) and businesses (n = 103) was low: 30% of the households and 54% of the businesses took no precautionary measures before the flood event. Many undertaken emergency measures were ineffective, since only 26% of all households knew how to react when the flood warning came, and only 9% of businesses had an emergency plan in place. Due to this extreme flood, double-loop learning occurred in many households and businesses, so that many did implement precautionary measures. The distribution of adopted precautionary measures for households fits well to Preisendörfer’s low-cost hypothesis, but does not apply for businesses. Only 10% of the households (n = 112), but still 29% of the businesses (n = 41) were unprepared before the flood in 2006. Significant improvement in flood preparedness activities is still necessary. Particularly for businesses, regulatory programs and programs encouraging proactive behaviour should be implemented. The focusing event framework proofed to be a useful tool for a differentiated analysis of the responses to and learning due to a disaster also in the commercial and private sector.  相似文献   

15.
The linear increment of Sphagnum fuscum and S. magellanicum in ombrotrophic mires of Western Siberia has been measured during two years over a transect about 2500 km long extending from forest–steppe to forest–tundra. Along the latitudinal gradient, the increment of both species has proved to be correlated with annual average air temperature and, in S. magellanicum, also with annual precipitation. The determinants of their growth differ between the southern, central, and northern parts of the study region. At the regional level, the annual and summer precipitation plays a more important role than the average air temperature. The increment of S. fuscum in the southern part is positively correlated with the amount of precipitation and negatively correlated with summer temperature, whereas the situation in the central part is inverse. In S. magellanicum, the linear increment is directly dependent on the annual average temperature and annual and summer precipitation in the south and on the annual and summer precipitation in the north of Western Siberia. The dynamics of linear growth of both species in bog pine forests during the growing season are similar: its rate is the highest in June, when the linear increment of S. fuscum and S. magellanicum amounts to 60 and 85% of the annual total, respectively.  相似文献   

16.
Riparian wetland controls the transfer of terrestrial dissolved organic matter (DOM) to surface water bodies. However, the effects of land use on riparian soil DOM quality and its contribution to aquatic environment are largely unknown. In this study, the amount and composition of water-extracted soil organic matter (WSOM) in riparian wetlands were determined to evaluate the effect of land uses on spatial patterns of WSOM and streamwater quality on Chongming Island, China. The fluorescent properties of WSOM and fluvial DOM were analyzed using EEM spectra-combining PARAFAC model and accurate MS and MS/MS identification. Our findings showed no differences in the riparian WSOC contents between land use types (agricultural land, natural wetland, commercial land and industrial land). However, the fluorescent WSOM and its humic-like (Comp.1 and Comp.2) and microbial degradation (Comp.4) components significantly varied under different land uses (P < 0.05). Overall, the fluorescent WSOM quantities and its components (Comp.1, Comp.2 and Comp.4) were present at markedly lower concentrations for agricultural land use relative to the other three land uses. The same distribution pattern was observed for carbonyl compounds and fatty acids in the riparian WSOM molecules (P < 0.05), but the distribution patterns of the lipids were different between the four land uses (P < 0.05). Industrial land could result in the input of more organic matter into the riparian wetland. Our results showed that fluvial Comp.1 and Comp.2 were significantly correlated with WSOM Comp.2 and WSOM Comp.4 (P < 0.05). We also observed that the fluvial trophic status was significantly higher when the fluvial DOM components increased (P < 0.05). These results indicated that land uses can alter the composition of riparian WSOM, reshape fluvial DOM compositions and significantly affect fluvial water quality.  相似文献   

17.
Returning farmland to forests is important for the protection of ecological values. Eucommia ulmoides is considered to be a suitable species for reforestation in the hilly red soil region of southern China. The objective of this study was to investigate the relationship between the water supply and demand of an E. ulmoides plantation to provide insights into the feasibility of large-scale planting for ecological restoration and forest management activities in the hilly red soil region of southern China. With the measured precipitation, surface runoff and interflow and actual evapotranspiration (ETc) estimated by the modified P–M model, soil water storage (SWS) was estimated based on the water balance equation. Monthly variations of SWS were then compared with in situ measured SWS. The results showed that the estimated mean monthly water losses (the sum of the surface runoff, interflow and ETc) were 139.8 mm in a wet year and 120.0 mm in a dry year, while the measured mean monthly water input values (net precipitation) were 131.2 mm in a wet year and 70.8 mm in a dry year. Net soil water storage (ΔSWS) was negative in each month of the growing season in a dry year, but the soil water deficit was replenished during the following season. The model performance showed that the modified P–M model can be adapted to estimate the soil water storage in other forest catchments where no adequate in situ data are available. As a result of estimating the water balance and observing soil water storage in two different hydrological years, E. ulmoides is recommended as a suitable forest rehabilitation species in the study area, and a suitable plant region has been defined by the GIS technique based on the water balance model.  相似文献   

18.
Future climate change may lead to a substantial loss of biodiversity, particularly affecting mountain regions, including the Alps. Range-size reduction in high mountain plant species is predicted to be more pronounced for endemic species. Investigating the broad temporal spectrum of range shifts is important for the conservation of biodiversity, since learning how species responded to climate change in the past provides useful insights on how they might react to warming trends in the present and future. Using species distribution models and an ensemble forecasting approach, we explored how the distribution of Berardia subacaulis, a monospecific genus endemic of the south-west Alps, may be affected by past and future projected climate change. During the last interglacial, the habitat suitability of Berardia was lower than present and a progressive increase was observed from the last glacial maximum until now. In the future, Berardia appears to lose more than 80 % of its range, becoming endangered by 2050. Our results suggest that Berardia probably survived past warmer periods in situ, expanding its distributional range during cooler periods. The severe future range contraction predicted for Berardia reflects similar results for other endemic species. As Berardia represents an interesting model species to evaluate the effects of climate warming on range size and shifts, demographic and precise range monitoring may be undertaken on this species.  相似文献   

19.
This paper aims at identifying the link between significant rainfall decreases (1950–2000) in the Mediterranean basin and the atmospheric circulation at the 500 hPa level. The months and seasons of the subregions with significant rainfall decrease during this period have been identified previously (Norrant and Douguédroit, Theor Appl Climatol 83(1–4):89–106, 2006): October in the Mediterranean Iberia, March in the Atlantic Iberia, January and winter in Greece, and winter in the Near East. Canonical Correlation Analyses based on the monthly and daily data records from 62 rainfall stations and 138 grid points at the 500 hPa level over a Euro-Atlantic window were first calculated to define the TeleConnection Patterns explaining significant regional rainfall decreases. Then, 500 hPa level weather types (ZWTs) of the rainy days with important or little rainfall associated with each Teleconnection Pattern were identified in each subregion. Rainfall-causing disturbances from the Atlantic reach Iberia directly; some of them are regenerated if they reach the Mediterranean. Other disturbances are generated locally near Greece and the Near East (Meteorological Office in Weather in the Mediterranean I: general meteorology, Her Majesty’s Stationery Office, London, 1962). The relationship between significant rainfall decreases and the corresponding 500 hPa level appears to be a nonlinear phenomenon. In all of the studied subregions, a break during the 1970s separates two subperiods differing significantly from each other. Rainfall decrease is due to the higher frequency of important rainfall ZWTs over low rainfall ZWTs, during the first period, which the opposite is true during the second period. Such an inversion could be partially linked with the prevailing North Atlantic Oscillation-positive phase during the last quarter of the twentieth century.  相似文献   

20.
Although the coastal salt marshes of Arabian Gulf have been altered extensively by human development activities, there is a paucity of data describing changes in the distribution and abundance of native coastal plant communities. The main objectives of this study are to determine vegetation condition, size structure, and conservation status of Nitraria retusa, a medicinal and salt-tolerant shrub, in disturbed and non-disturbed coastal salt marshes of Kuwait. Size measurements of Nitraria shrubs and nabkas, which are mounds of sediment developed around shrubs, were carried out in 50 quadrats (20 × 20 m2), randomly selected inside and outside Sabah Al-Ahmad Natural Reserve. Species richness and soil properties of nabkas and interspaces, the open areas between the nabkas, were also measured. The results revealed that nabkas of Nitraria in non-disturbed sites are more stable and rich in plant diversity than those in disturbed sites. Mean height and mean canopy diameter of Nitraria shrubs, total plant cover, and species richness are significantly higher in non-disturbed sites than disturbed sites, which indicate the positive influences of conservation for long term on vegetation structure and species richness. The results of soil analyses indicate the important role of nabkas in providing refuges for plant life and species diversity. The present study indicates that more than 50 % of the N. retusa community has been lost during the last few decades. Therefore, N. retusa should be considered an endangered species in Kuwait. The reduction in vegetation cover, a decline in species richness, and the overall degradation of salt marshes are attributed to human development activities along the coast of Kuwait. Effective conservation actions for threatened species in degraded coastal salt marshes of this region include establishment of protective enclosures, prohibitions on development that adversely affects native plant communities, and the planting native salt-tolerant shrubs to facilitate regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号