首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
De-icing chemicals used during the winter season are potential pollutants for the groundwater underneath the new main airport of Norway. Several field experiments examining the transport and degradation of propyleneglycol (PG), potassium acetate (KAc) and non-reactive tracers were performed in a lysimeter trench under natural snowmelting conditions. Chemicals were applied underneath the snow cover and the transport in a heterogeneous coarse sandy soil was examined by extracting soil water from 30 or 40 suction cups placed at five depths between 0.4 and 2.4 m depth. Transport and degradation was analysed by spatial moment calculations. The de-icing chemicals showed the same basic displacement as chemically inactive tracers, an initial fast transport during the melting period followed by a period of stagnation throughout the summer season. PG seemed to be displaced to greater depths compared to non-reactive tracer after the first application. However, computer simulations of transport and degradation in a heterogeneous unsaturated soil showed that decreasing degradation constants with depth can generate a downward movement of the centre of mass without any flow occurring in the system. Potassium acetate showed some adsorption, with calculated retardation factors of approximately 1.3 and 1.2. The degradation rate constant for PG was calculated to be 0.015 day-1 in 1994 and increased to 0.047 day-1 in the second application made in 1995. The degradation rate constant for acetate was estimated to be 0.02 day-1. Increased manganese concentrations seem to be a good indicator of degradation of PG and Ac.  相似文献   

2.
Non-invasive spatially resolved monitoring techniques may hold the key to observe heterogeneous flow and transport behavior of contaminants in soils. In this study, time-lapse electrical resistivity tomography (ERT) was employed during an infiltration experiment with deicing chemical in a small field lysimeter. Deicing chemicals like potassium formate, which frequently impact soils on airport sites, were infiltrated during snow melt. Chemical composition of seepage water and the electrical response was recorded over the spring period 2010. Time-lapse electrical resistivity tomographs are able to show the infiltration of the melt water loaded with ionic constituents of deicing chemicals and their degradation product hydrogen carbonate. The tomographs indicate early breakthrough behavior in parts of the profile. Groundtruthing with pore fluid conductivity and water content variations shows disagreement between expected and observed bulk conductivity. This was attributed to the different sampling volume of traditional methods and ERT due to a considerable fraction of immobile water in the soil. The results show that ERT can be used as a soil monitoring tool on airport sites if assisted by common soil monitoring techniques.  相似文献   

3.
Continued input of airplane de-icing/anti-icing fluids (ADAF) to runway adjacent soils may result in the depletion of soil-borne terminal electron acceptors. We studied the transport and transformation of propylene glycol (PG), the major constituent of many ADAF, in topsoil and subsoil samples using saturated column experiments at 4 degrees C and 20 degrees C. The export of soil-borne DOC was generally high, non-exhaustive and rate limited. Retardation of added PG was negligible. Rapid PG degradation was observed only in topsoil materials high in organic matter at 20 degrees C. At 4 degrees C, no significant degradation was observed. Thus, under unfavorable, i.e., wet and cold conditions typical for winter de-icing operations, PG and its metabolites will be relocated to deeper soil horizons or even to the groundwater. In subsoil materials, PG degradation was very slow and incomplete. We found that subsoil degradation depended on the import of active microorganisms originating from the organic-rich topsoil material. The degradation efficiency is strongly influenced by the flow velocity, i.e., the residence time of PG in the soil column. Poorly crystalline iron(III) and manganese(IV) (hydr)oxides are used during microbial respiration acting as terminal electron acceptors. This results in the formation and effective relocation of reduced and mobile Fe and Mn species. Long-term application of ADAF to runway adjacent soil as well as the lasting consumption of Fe and Mn will tend to decrease the soil redox potential. Without proper counteractive measures, this will eventually favor the development of methanogenic conditions.  相似文献   

4.
Aircraft de-icing fluids (ADF) are a source of water and soil pollution in airport sites. Propylene glycol (PG) is a main component in several commercial formulations of ADFs. Even though PG is biodegradable in soil, seasonal overloads may result in occasional groundwater contamination. Feasibility studies for the biostimulation of PG degradation in soil have been carried out in soil slurries, soil microcosms and enrichment cultures with and without the addition of nutrients (N and P sources, oligoelements), alternative electron acceptors (nitrate, oxygen releasing compounds) and adsorbents (activated carbon). Soil samples have been taken from the contaminated area of Gardermoen Airport Oslo. Under aerobic conditions and in the absence of added nutrients, no or scarce biomass growth is observed and PG degradation occurs by maintenance metabolism at constant removal rate by the original population of PG degraders. With the addition of nutrient, biomass exponential growth enhances aerobic PG degradation also at low temperatures (4 ° C) that occur at the high season of snowmelt. Anaerobic PG degradation without added nutrients still proceeds at constant rate (i.e. no biomass growth) and gives rise to reduced fermentation product (propionic acid, reduced Fe and Mn, methane). The addition of nitrate does not promote biomass growth but allows full PG mineralization without reduced by-products. Further exploitation on the field is necessary to fully evaluate the effect of oxygen releasing compounds and adsorbents.  相似文献   

5.
A routing procedure is introduced which accounts for the loss of a conservative solute tracer from preferred paths during macropore flow. Water flow is treated as a series of kinematic waves from which the tracer is lost due to mixing previously stored soil water, and an expression for solute loss is added to a previously developed model. The model parameters are estimated through experiments at three different input rates applied to a column of a macroporous forest soil.The results of seven experimental runs indicate that solute losses are consistently highest at the early stages of infiltration and drainage flow. An empirical relationship is proposed which links the frequency distribution of the flow parameter with that for solute loss from the preferred path during transient water flow and solute transport.  相似文献   

6.
Transport of reactive solute in unsaturated soils under an infiltration-redistribution cycle is investigated. The study is based on the model of vertical flow and transport in the unsaturated zone proposed by Indelman et al. [J. Contam. Hydrol. 32 (1998) 77], and generalizes it by accounting for linear nonequilibrium kinetics. An exact analytical solution is derived for an irreversible desorption reaction. The transport of solute obeying linear kinetics is modeled by assuming equilibrium during the redistribution stage. The model which accounts for nonequilibrium during the infiltration and assumes equilibrium at the redistribution stage is termed partial equilibrium infiltration-redistribution model (PEIRM). It allows to derive approximate closed form solutions for transport in one-dimensional homogeneous soils. These solutions are further applied to computing the field-scale concentration by adopting the Dagan and Bresler [Soil Sci. Soc. Am. J. 43 (1979) 461] column model. The effect of soil heterogeneity on the solute spread is investigated by modeling the hydraulic saturated conductivity as a random function of horizontal coordinates. The quality of the PEIRM is illustrated by calculating the critical values of the Damk?hler number which provide the achievable accuracy in estimating the solute mass in the mobile phase. The distinguishing feature of transport during the infiltration-redistribution cycle as compared to that of infiltration only is the finite depth of solute penetration. For irreversible desorption, the maximum solute penetration W/theta(r) is determined by the amount of applied water W and the residual water content theta(r). For sorption-desorption kinetics, the maximum depth of penetration z(r)(e, infinity ) also depends on the ratio between the rate of application and the column-saturated conductivity. It is shown that z(r)(e, infinity ) is bounded between the depths W/(theta(r)+K(d)) and W/theta(r) corresponding to the maximum solute penetration for equilibrium transport and for irreversible desorption, respectively. This feature of solute penetration explains the unusual phenomena of plume contraction after an initial period of spreading [Lessoff, S.C., Indelman, P., Dagan, G., 2002. Solute transport in infiltration-redistribution cycles in heterogeneous soils. In Raats, P.A.C., Smiles, D.,Warrick, A.W. (Eds), Environmental Mechanics: Water, Mass and Energy Transport in the Biosphere. American Geophysical Union, pp. 133-144]. Unlike transport under equilibrium conditions, when the solute is completely concentrated at the front, the solute under nonequilibrium conditions is spread out behind the front. Heterogeneity leads to additional spreading of the plume.  相似文献   

7.
When soil structure varies in different soil types and the horizons of these soil types, it has a significant impact on water flow and contaminant transport in soils. This paper focuses on the effect of soil structure variations on the transport of pesticides in the soil above the water table. Transport of a pesticide (chlorotoluron) initially applied on soil columns taken from various horizons of three different soil types (Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol) was studied using two scenarios of ponding infiltration. The highest infiltration rate and pesticide mobility were observed for the Bt1 horizon of Haplic Luvisol that exhibited a well-developed prismatic structure. The lowest infiltration rate was measured for the Bw horizon of Haplic Cambisol, which had a poorly developed soil structure and a low fraction of large capillary pores and gravitational pores. Water infiltration rates were reduced during the experiments by a soil structure breakdown, swelling of clay and/or air entrapped in soil samples. The largest soil structure breakdown and infiltration decrease was observed for the Ap horizon of Haplic Luvisol due to the low aggregate stability of the initially well-aggregated soil. Single-porosity and dual-permeability (with matrix and macropore domains) flow models in HYDRUS-1D were used to estimate soil hydraulic parameters via numerical inversion using data from the first infiltration experiment. A fraction of the macropore domain in the dual-permeability model was estimated using the micro-morphological images. Final soil hydraulic parameters determined using the single-porosity and dual-permeability models were subsequently used to optimize solute transport parameters. To improve numerical inversion results, the two-site sorption model was also applied. Although structural changes observed during the experiment affected water flow and solute transport, the dual-permeability model together with the two-site sorption model proved to be able to approximate experimental data.  相似文献   

8.
Water quality in the unsaturated and saturated zones of a waste rock pile containing sulphides was investigated. The main objectives of the project were (1) the evaluation of geochemical trends including the acid mine drainage (AMD)-buffering mechanism and the role of secondary minerals, and (2) the investigation of the use of stable isotopes for the interpretation of physical and geochemical processes in waste rock. Pore water in unsaturated zone was sampled from suction lysimeters and with piezometers in underlying saturated rocks. The investigation revealed strong temporal (dry period vs. recharge period), and spatial (slope vs. central region of pile) variability in the formation of acid mine drainage. The main secondary minerals observed were gypsum and jarosite. There was a higher concentration of gypsum in solid phase at Site TBT than at Site 6, suggesting that part of the gypsum formed at Site 6 in the early stage of AMD has been already dissolved. Formation of secondary minerals contributed to the formation of AMD by opening of foliation planes in waste rock, thus increasing the access of oxidants like O2 and Fe3+ to previously encapsulated pyrite. The behavior of several dissolved species such as Mg, Al, and Fe2+ can be considered as conservative in the leachate. Stable isotopes, deuterium and 18O, indicated internal evaporation within the pile, and were used to trace recharge pulses from snowmelt. Isotope trends for 34S and 18O(SO4) indicated a lack of sulfate reduction and zones of active oxidation of pyrite, respectively. Results of numerical modeling of pyrite oxidation and gas and water transport were consistent with geochemical and isotopic trends and confirmed zones of high evaporation rate within the rock pile close to the slope. The results indicate that physical and chemical processes within the pile are strongly coupled and cannot be considered separately when oxidation rates are high and influence gas transport as a result of heat generation.  相似文献   

9.
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due to higher preferential flow and lower fraction of equilibrium sorption sites.  相似文献   

10.
11.
The effects of pore-water velocity, solute hydrophobicity, and sorbent organic-carbon content on sorption nonequilibrium during solute transport were evaluated. Nonequilibrium transport was observed to increase with pore-water velocity, solute hydrophobicity, and sorbent organic-carbon content. Nonequilibrium transport of neutral organic compounds was not detected with low organic-carbon (TOC = 0.33 g kg−1) aquifer material, but was detected on higher organic sorbents from the unsaturated zone (TOC = 2.6 g kg−1) and the soil surface (TOC = 6.9 g kg−1). For solute-sorbent combinations yielding retardation factors > 2, nonequilibrium during transport was observed. After experimentally accounting for slow solute diffusion in the aqueous phase and isotherm nonlinearity as potential contributors to nonequilibrium solute transport, sorption nonequilibrium was attributed to slow solute diffusion within the organic-carbon matrix.  相似文献   

12.
The natural microbial activity in the unsaturated soil is vital for protecting groundwater in areas where high loads of biodegradable contaminants are supplied to the surface, which usually is the case for airports using aircraft de-icing fluids (ADF) in the cold season. Horizontal and vertical distributions of microbial abundance were assessed along the western runway of Oslo Airport (Gardermoen, Norway) to monitor the effect of ADF dispersion with special reference to the component with the highest chemical oxygen demand (COD), propylene glycol (PG). Microbial abundance was evaluated by several biondicators: colony-forming units (CFU) of some physiological groups (aerobic and anaerobic heterotrophs and microscopic fungi), most probable numbers (MPN) of PG degraders, selected catabolic enzymatic activities (fluorescein diacetate (FDA) hydrolase, dehydrogenase, and β-glucosidase). High correlations were found between the enzymatic activities and microbial counts in vertical soil profiles. All microbial abundance indicators showed a steep drop in the first meter of soil depth. The vertical distribution of microbial abundance can be correlated by a decreasing exponential function of depth. The horizontal trend of microbial abundance (evaluated as total aerobic CFU, MPN of PG-degraders, and FDA hydrolase activity) assessed in the surface soil at an increasing distance from the runway is correlated negatively with the PG and COD loads, suggesting the relevance of other chemicals in the modulation of microbial growth. The possible role of potassium formate, component of runway de-icers, has been tested in the laboratory by using mixed cultures of Pseudomonas spp., obtained by enrichment with a selective PG medium from soil samples taken at the most contaminated area near the runway. The inhibitory effect of formate on the growth of PG degraders is proven by the reduction of biomass yield on PG in the presence of formate.  相似文献   

13.
Al, V, Mn, Fe, Cu, As, Cd, Ba, Pb, Bi and U were determined in a continuous series of 46 snow samples from a 2.3-m snow pit, covering the time period from austral spring 1998 to summer 2002, at a site on the east side of the Lambert Glacier basin in East Antarctica. Concentrations are very low for all metals and differ by orders of magnitude from one metal to another, with the mean concentrations ranging from 0.028 pg g−1 for Bi to 165 pg g−1 for Al. It is estimated that anthropogenic contributions are dominant for Cu, Pb and probably As, in the snow in our study area while the natural contributions from rock and soil dust, sea-salt spray and volcanic emissions account for most of the measured concentrations of the other metals. Our snow profiles show pronounced seasonal variations for Mn, As, Ba, Pb and Bi throughout the year, but a very different situation is observed between different metals. These observations suggest that heavy metals determined in our samples are controlled by different transport and deposition mechanisms related to physical and chemical alterations in the properties and sources of aerosol.  相似文献   

14.
Zuo Y  Zhang K  Wu J  Men B  He M 《Chemosphere》2011,83(7):1014-1019
Phthalic acid and its photochemical degradation has been determined in snow and rainwater samples collected during winters (2003-2010) in the Southeast of Massachusetts using capillary gas chromatography (GC) with flame ionization and mass spectrometric detection. Water samples were dried using a rotary evaporator and derivatized with a 14% BF3/methanol reagent before GC analysis. The developed method proved simple and accurate. Phthalic acid was found in snow samples collected in a concentration range of 7.22-76.5 nM. The photodegradation of phthalate was carried out under 300 nm UV light. The direct photodecomposition of the acid is slow (5% h−1). However, the addition of dissolved Fe(III) species at 2.0 μM accelerated the light-induced degradation of phthalic acid by 3.5 times in the atmospheric water samples. Photodegradation rates of phthalic acid increases with decreasing pH value of water samples in the range of pH 2.8-4.5.  相似文献   

15.
Soil macropore networks establish a dual-domain transport scenario in which water and solutes are preferentially channeled through soil macropores while slowly diffusing into and out of the bulk soil matrix. The influence of macropore networks on intra-ped solute diffusion and preferential transport in a soil typical of subsurface-drained croplands in the Midwestern United States was studied in batch- and column-scale experiments. In the batch diffusion studies with soil aggregates, the estimated diffusion radius (length) of the soil aggregates corresponded to the half-spacing of the aggregate fissures, suggesting that the intra-ped fissures reduced the diffusion impedance and preferentially allowed solutes to diffuse into the soil matrix. In the column-scale solute transport experiments, the average diffusion radius (estimated from HYDRUS-2D simulations and a first-order diffusive transfer term) was nearly double that of the batch-scale study. This increase may be attributed to a loss of pore continuity and a compounding of the small diffusion impedance through macropores at the larger scale. The column-scale solute transport experiments also suggest that two preferential networks exist in the soil. At and near soil saturation, a primary network of large macropores (possibly root channels and earthworm burrows) dominate advective transport, causing a high degree of physical and sorption nonequilibrium and simultaneous breakthrough of a nonreactive (bromide) and a reactive (alachlor) solute. As the saturation level decreases, the primary network drains, while transport through smaller macropores (possibly intra-ped features) continues, resulting in a reduced degree of nonequilibrium and separation in the breakthrough curves of bromide and alachlor.  相似文献   

16.
Transport and degradation of de-icing chemical (containing propylene glycol, PG) in the vadose zone were studied with a lysimeter experiment and a model, in which transient water flow, kinetic degradation of PG and soil chemistry were combined. The lysimeter experiment indicated that aerobic as well as anaerobic degradation occurs in the vadose zone. Therefore, the model included both types of degradation, which was made possible by assuming advection-controlled (mobile) and diffusion-controlled (immobile) zones. In the mobile zone, oxygen can be transported by diffusion in the gas phase. The immobile zone is always water-saturated, and oxygen only diffuses slowly in the water phase. Therefore, the model is designed in a way that the redox potential can decrease when PG is degraded, and thus, anaerobic degradation can occur. In our model, manganese oxide (MnO2, which is present in the soil) and NO \(_{3}^{-}\) (applied to enhance biodegradation) can be used as electron acceptors for anaerobic degradation. The application of NO \(_{3}^{-}\) does not result in a lower leaching of PG nor in a slower depletion of MnO2. The thickness of the snowcover influences the leached fraction of PG, as with a high infiltration rate, transport is fast, there is less time for degradation and thus more PG will leach. The model showed that, in this soil, the effect of the water flow dominates over the effect of the degradation parameters on the leaching at a 1-m depth.  相似文献   

17.
Penetration of reactive solute into a soil during a cycle of water infiltration and redistribution is investigated by deriving analytical closed form solutions for fluid flux, moisture content and contaminant concentration. The solution is developed for gravitational flow and advective transport and is applied to two scenarios of solute applications encountered in the applications: a finite pulse of solute dissolved in irrigation water and an instantaneous pulse broadcasted onto the soil surface. Through comparison to simulations of Richards' flow, capillary suction is shown to have contrasting effects on the upper and lower boundaries of the fluid pulse, speeding penetration of the wetting front and reducing the rate of drying. This leads to agreement between the analytical and numerical solutions for typical field and experimental conditions. The analytical solution is further incorporated into a stochastic column model of flow and transport to compute mean solute concentration in a heterogeneous field. An unusual phenomenon of plume contraction is observed at long times of solute propagation during the drying stage. The mean concentration profiles match those of the Monte-Carlo simulations for capillary length scales typical of sandy soils.  相似文献   

18.
This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers’ perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated.  相似文献   

19.
Long Ye  Hong You  Jie Yao  Xi Kang  Lu Tang 《Chemosphere》2013,90(10):2493-2498
Seasonal variation and influencing factors of perchlorate in snow, surface soil, rain, surface water, groundwater and corn were studied. Seven hundreds and seventy samples were collected in different periods in Harbin and its vicinity, China. Perchlorate concentrations were analyzed by ion chromatography–electrospray mass spectrometry. Results indicate that fireworks and firecrackers display from the Spring Festival to the Lantern Festival (February 2, 2011–February 17, 2011) can result in the occurrence of perchlorate in surface soil and snow. Perchlorate distribution is affected by wind direction in winter. Melting snow which contained perchlorate can dissolve perchlorate in surface soil, and then perchlorate can percolate into groundwater so that perchlorate concentrations in groundwater increased in spring. Perchlorate concentrations in groundwater and surface water decrease after rainy season in summer. Groundwater samples collected in the floodplain areas of the Songhua River and the Ashi River contained higher perchlorate concentrations than that far away with the rivers. The corns have the ability to accumulate perchlorate.  相似文献   

20.
Lake Van in Turkey is the world's largest soda lake (607 km(3)). The lake's catchment area is estimated to be ~12,500 km(2), and the terrestrial input is carried through eolian, riverine, snowmelt and anthropogenic paths. Extent and seasonality of the terrestrial inputs to the lake have not been studied, but it is essential to evaluate its environmental status and to assess the use of environmental proxies to estimate the lake's response to climate changes. This study aims to measure seasonal changes in terrestrial input of natural and anthropogenic origin as recorded by the fluxes of pollen and biomarkers of soil bacteria and vascular or higher plants, as well as petrogenic biomarkers in monthly resolved sediment traps from August 2006 to July 2007. Fluxes of pollen, soil and higher plant biomarkers seem to be related to precipitation and snowmelt in autumn and spring. In addition, dust storms, which are common during the summer months, may have resulted in long-distance transport. Anthropogenic biomarker fluxes indicate year-round petrogenic contamination although some mature biomarker fluxes are higher in summer and in late winter-spring. The relative changes between petrogenic markers indicate variations in the pollutant sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号