首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Accumulation of oily sludge is becoming a serious environmental threat, and there has not been much work reported for the removal of hydrocarbon from refinery tank bottom sludge. Effort has been made in this study to investigate the removal of hydrocarbon from refinery sludge by isolated biosurfactant-producing Pseudomonas aeruginosa RS29 strain and explore the biosurfactant for its composition and stability. Laboratory investigation was carried out with this strain to observe its efficacy of removing hydrocarbon from refinery sludge employing whole bacterial culture and culture supernatant to various concentrations of sand–sludge mixture. Removal of hydrocarbon was recorded after 20 days. Analysis of the produced biosurfactant was carried out to get the idea about its stability and composition. The strain could remove up to 85?±?3 and 55?±?4.5 % of hydrocarbon from refinery sludge when whole bacterial culture and culture supernatant were used, respectively. Maximum surface tension reduction (26.3 mN m?1) was achieved with the strain in just 24 h of time. Emulsification index (E24) was recorded as 100 and 80 % with crude oil and n-hexadecane, respectively. The biosurfactant was confirmed as rhamnolipid containing C8 and C10 fatty acid components and having more mono-rhamnolipid congeners than the di-rhamnolipid ones. The biosurfactant was stable up to 121 °C, pH 2–10, and up to a salinity value of 2–10 % w/v. To our knowledge, this is the first report showing the potentiality of a native strain from the northeast region of India for the efficient removal of hydrocarbon from refinery sludge.  相似文献   

2.

Oil contamination has become a primary environmental concern due to increased exploration, production, and use. When oil enters the soil, it may attach or adsorb to soil particles and stay in the soil for an extended period, contaminating the soil and surrounding areas. Nanoparticles have been widely used for the treatment of organic pollutants in the soil. Surfactant foam has effectively been employed to remediate various soil contaminants or recover oil compounds. In this research, a mixture of biosurfactant foam/nanoparticle was utilized for remediation of oil-contaminated soil. The results demonstrated that the biosurfactant/nanoparticle mixture and nitrogen gas formed high-quality and stable foams. The foam stability depended on the foam quality, biosurfactant concentration, and nanoparticle dosage. The pressure gradient change in the soil column relied on the flowrate (N2 gas + surfactant/nanoparticle mixture), foam quality, and biosurfactant concentration. The optimal conditions to obtain good quality and stable foams and high oil removal efficiency involved 1 vol% rhamnolipid, 1 wt% nanoparticle, and 1 mL/min flowrate. Biosurfactant foam/nanoparticle mixture was effectively used to remediate oil-contaminated soil, whereas the highest treatment efficiency was 67%, 59%, and 52% for rhamnolipid biosurfactant foam/nanoparticle, rhamnolipid biosurfactant/nanoparticle, and only rhamnolipid biosurfactant, respectively. The oil removal productivity decreased with the increase of flowrate due to the shorter contact time between the foam mixture and oil droplets. The breakthrough curves of oil pollutants in the soil column also suggested that the foam mixture’s maximum oil treatment efficiency was higher than biosurfactant/nanoparticle suspension and only biosurfactant.

  相似文献   

3.
Urum K  Grigson S  Pekdemir T  McMenamy S 《Chemosphere》2006,62(9):1403-1410
This paper presents the results from study investigating the efficiency with which different surfactants remove crude oil from contaminated soil using a soil washing process. The surfactants studied were aqueous solutions of rhamnolipid, saponin and sodium dodecyl sulfate (SDS). The efficiency of surfactants' removal was quantified and then GC/MS analysis conducted to investigate the distribution of hydrocarbons remaining on the washed soil samples compared to those on a control. The results showed that SDS removed the most crude oil from soil, followed by rhamnolipid and then saponin. However, the different surfactants showed preferences in terms of which crude oil components they removed from the contaminated soil. SDS removed more of the aliphatics than aromatic hydrocarbons whereas saponin removed the aromatic hydrocarbon preferentially to the aliphatic hydrocarbons. Clearly these results provide important information for the selection of surfactants used to remove crude oil from contaminated soils.  相似文献   

4.
Chaillan F  Gugger M  Saliot A  Couté A  Oudot J 《Chemosphere》2006,62(10):1574-1582
Cyanobacterial mats are ubiquitous in tropical petroleum-polluted environments. They form a high biodiversity microbial consortium that contains efficient hydrocarbons degraders. A cyanobacterial mat collected from a petroleum-contaminated environment located in Indonesia was studied for its biodegradation potential. In the field, the natural mat was shown to degrade efficiently the crude oil present in the environment. This natural mat demonstrated also a strong activity of degradation on model crude oil under laboratory conditions. In axenic cultures, the monospecific cyanobacterium Phormidium animale that constitute the bulk of the biomass did not exhibit any degradative capacity on hydrocarbons in the range of C13-C35 carbon atom number either in autotrophic or heterotrophic conditions. It was concluded that this cyanobacterial strain living on a heavily contaminated site had no direct effect on biodegradation of crude oil, the degradation activity being exclusively achieved by the other microorganisms present in the microbial consortium of the mat.  相似文献   

5.
Evaluation of biosurfactants for crude oil contaminated soil washing   总被引:13,自引:0,他引:13  
Urum K  Pekdemir T 《Chemosphere》2004,57(9):1139-1150
An evaluation of the ability of aqueous biosurfactant solutions (aescin, lecithin, rhamnolipid, saponin and tannin) for possible applications in washing crude oil contaminated soil was carried out. The biosurfactants behaviour in soil-water, water-oil and oil-soil systems (such as foaming, solubilization, sorption to soil, emulsification, surface and interfacial tension) was measured and compared with a well-known chemical surfactant (sodium dodecyl sulphate, SDS) at varying concentrations. Results showed that the biosurfactants were able to remove significant amount of crude oil from the contaminated soil at different solution concentrations for instance rhamnolipid and SDS removed up to 80% oil and lecithin about 42%. The performance of water alone in crude oil removal was equally as good as those of the other biosurfactants. Oil removal was due to mobilization, caused by the reduction of surface and interfacial tensions. Solubilization and emulsification effects in oil removal were negligible due to the low crude oil solubilization of 0.11%. Therefore, these studies suggest that knowledge of surfactants' behaviour across different systems is paramount before their use in the practical application of oil removal.  相似文献   

6.
Ilori MO  Amobi CJ  Odocha AC 《Chemosphere》2005,61(7):985-992
An Aeromonas spp. was isolated from tropical estuarine water. The organism grew on crude oil and produced biosurfactant that could emulsify hydrocarbons. The peak growth and biosurfactant production was on the 8th day. The organism grew on a range of hydrocarbons that include crude oil and hexadecane while no growth was recorded on some hydrocarbons that include benzene. The biosurfactant produced by the organism emulsified a range of hydrocarbons with diesel (E24=65) as the best substrate and hexane (E24=22) as the poorest. After purification, the biosurfactant was found to contain about 38% carbohydrate and an unidentified lipid. No protein was present in the purified biosurfactant. Production of biosurfactant was highest in medium with glucose and lowest in the medium with diesel+acetate. Soybean was the best nitrogen source for biosurfactant production. The activity of the biosurfactant was enhanced optimally at NaCl concentration of 5%, pH of 8.0 and temperature of 40 degrees C. The biosurfactant retained 77% of its original activity after 120 min of exposure to heat at a temperature of 100 degrees C. Biosurfactant may be produced with this organism using non-hydrocarbon substrates such as glucose and soybean that are readily available and would not require extensive purification for use in food and pharmaceutical industries.  相似文献   

7.

Background, aim, and scope

Primitive wax refining techniques had resulted in almost 50,000 tonnes of acidic oily sludge (pH 1–3) being accumulated inside the Digboi refinery premises in Assam state, northeast India. A novel yeast species Candida digboiensis TERI ASN6 was obtained that could degrade the acidic petroleum hydrocarbons at pH 3 under laboratory conditions. The aim of this study was to evaluate the degradation potential of this strain under laboratory and field conditions.

Materials and methods

The ability of TERI ASN6 to degrade the hydrocarbons found in the acidic oily sludge was established by gravimetry and gas chromatography–mass spectroscopy. Following this, a feasibility study was done, on site, to study various treatments for the remediation of the acidic sludge. Among the treatments, the application of C. digboiensis TERI ASN6 with nutrients showed the highest degradation of the acidic oily sludge. This treatment was then selected for the full-scale bioremediation study conducted on site, inside the refinery premises.

Results

The novel yeast strain TERI ASN6 could degrade 40 mg of eicosane in 50 ml of minimal salts medium in 10 days and 72% of heneicosane in 192 h at pH 3. The degradation of alkanes yielded monocarboxylic acid intermediates while the polycyclic aromatic hydrocarbon pyrene found in the acidic oily sludge yielded the oxygenated intermediate pyrenol. In the feasibility study, the application of TERI ASN6 with nutrients showed a reduction of solvent extractable total petroleum hydrocarbon (TPH) from 160 to 28.81 g kg?1 soil as compared to a TPH reduction from 183.85 to 151.10 g kg?1 soil in the untreated control in 135 days. The full-scale bioremediation study in a 3,280-m2 area in the refinery showed a reduction of TPH from 184.06 to 7.96 g kg?1 soil in 175 days.

Discussion

Degradation of petroleum hydrocarbons by microbes is a well-known phenomenon, but most microbes are unable to withstand the low pH conditions found in Digboi refinery. The strain C. digboiensis could efficiently degrade the acidic oily sludge on site because of its robust nature, probably acquired by prolonged exposure to the contaminants.

Conclusions

This study establishes the potential of novel yeast strain to bioremediate hydrocarbons at low pH under field conditions.

Recommendations and perspectives

Acidic oily sludge is a potential environmental hazard. The components of the oily sludge are toxic and carcinogenic, and the acidity of the sludge further increases this problem. These results establish that the novel yeast strain C. digboiensis was able to degrade hydrocarbons at low pH and can therefore be used for bioremediating soils that have been contaminated by acidic hydrocarbon wastes generated by other methods as well.  相似文献   

8.
从含油废水中筛选分离到1株原油降解菌XD-1,鉴定为假单胞菌(Pseuomonas sp.).初步实验表明菌XD-1具有较强的产表面活性剂乳化原油的作用,对该菌的产表面活性剂性能进行了研究.实验证明,菌XD-1所产表面活性剂为脂肽类物质,菌在生长对数期产表面活性剂,表面活性剂的产生为生长相关型;充足的碳源是产表面活性剂的必需条件,菌利用原油为碳源时能持续大量地产表面活性剂;原油和尿素为产表面活性剂的最适碳源和氮源,菌XD-1产表面活性剂的最佳营养培养基组成为葡萄糖10 g,尿素4 g,磷酸二氢钾1 g,微量元素液4 mL,水1 L,pH 8.0.  相似文献   

9.
10.
生物接触氧化法处理稠油污水实验研究   总被引:1,自引:0,他引:1  
将从稠油污水中筛选出的3株高效烃类降解菌株HD-1、HD-2和HD-3用于稠油污水处理,研究了单一菌株和混合菌株对原油和COD的去除率。实验结果表明,单一菌株对原油和COD具有很好的去除效果,混合菌株对原油和COD去除效果更加显著。室内模拟实验结果表明,在停留时间为6 h时,含油量和COD分别为30 mg/L和300 mg/L时,经过生物接触氧化处理,出水含油量和COD分别降至1 mg/L和50 mg/L以下,达到了反渗透膜组件预处理的要求,为稠油污水热采锅炉用水回用提供了理论基础。  相似文献   

11.
The biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and seven fungi species, including imperfect strains and higher level lignolitic species, is compared in a 90-day laboratory experiment using a natural, not-fertilized soil contaminated with 10% crude oil. The natural microbial soil assemblage isolated from an urban forest area was unable to significantly degrade crude oil, whereas pure fungi cultures effectively reduced the residues by 26-35% in 90 days. Normal alkanes were almost completely degraded in the first 15 days, whereas aromatic compounds (phenanthrene and methylphenanthrenes) exhibited slower kinetics. Aspergillus terreus and Fusarium solani, isolated from oil-polluted areas, produced the more efficient attack of aliphatic and aromatic hydrocarbons, respectively. Overall, imperfect fungi isolated from polluted soils showed a somewhat higher efficiency, but the performance of unadapted, indigenous, lignolitic fungi was comparable, and all three species, Pleurotus ostreatus, Trametes villosus and Coriolopsis rigida, effectively degraded aliphatic and aromatic components. The simultaneous, multivariate analysis of 22 parameters allowed the elucidation of a clear reactivity trend of the oil components during biodegradation: lower molecular weight n-alkanes > phenanthrene > 3-2-methylphenanthrenes > intermediate chain length n-alkanes > longer chain length n-alkanes > isoprenoids approximately 9-1-methylphenanthrenes. Irrespective of the individual degrading capacities, all fungi species tested seem to follow this decomposition sequence.  相似文献   

12.
Heavy metal contamination of sediments is hazardous to benthic organisms and needs more attention in order to prevent entry of these heavy metals into the food chain. Biosurfactants have shown the capability to remove heavy metals from soils and sediments. The objective of this research was to evaluate the performance of rhamnolipid, a glycolipid biosurfactant, in a continuous flow configuration (CFC) for removal of heavy metals (copper, zinc, and nickel) from the sediments taken from Lachine Canal, Canada, to simulate a flow through remediation technique. In this configuration, rhamnolipid solution with a constant rate was passed through the sediment sample within a column. Important parameters such as the concentration of rhamnolipid and the additives, time and the flow rate were investigated. The removal of heavy metals from sediments was up to 37% of Cu, 13% of Zn, and 27% of Ni when rhamnolipid without additives was applied. Adding 1% NaOH to 0.5% rhamnolipid improved the removal of copper by up to 4 times compared with 0.5% rhamnolipid alone. This information is valuable for designing a remediation protocol for sediment washing.  相似文献   

13.
This study investigated the effect of cation type, ionic strength, and pH on the performance of an anionic monorhamnolipid biosurfactant for solubilization and removal of residual hexadecane from sand. Three common soil cations, Na+, Mg2+, and Ca2+, were used in these experiments and hexadecane was chosen to represent a nonaqueous phase liquid (NAPL) less dense than water. Results showed that hexadecane solubility in rhamnolipid solution was significantly increased by the addition of Na+ and Mg2+. Addition of up to 0.2 mM Ca2+ also increased hexadecane solubility. For Ca2+ concentrations greater than 0.2 mM there was little effect on hexadecane solubility due to competing effects of calcium-induced rhamnolipid precipitation and enhanced hexadecane solubilization. Efficiency of NAPL solubilization can be expressed in terms of molar solubilization ratios (MSR). The results showed that MSR values for hexadecane in rhamnolipid solutions increased 7.5-fold in the presence of 500 mM Na+, and 25-fold in the presence of 1 mM Mg2+. The presence of cations also reduced the interfacial tension between rhamnolipid solutions and hexadecane. For example, an increase in Na+ from 0 to 800 mM caused a decrease in interfacial tension from 2.2 to 0.89 dyn cm−1. Similarly, decreasing pH caused a reduction in interfacial tension. The lowest interfacial tension value observed in this study was 0.02 dyn cm−1 at pH 6 in the presence of 320 mM Na+. These conditions were also found to be optimal for removal of hexadecane residual from sand columns, with 58% of residual removed within three pore volumes. The removal of residual NAPL from the packed columns was primarily by mobilization, even though solubilization was significantly increased in the presence of Na+.  相似文献   

14.
Liu W  Wang X  Wu L  Chen M  Tu C  Luo Y  Christie P 《Chemosphere》2012,87(10):1105-1110
Over 100 biosurfactant-producing microorganisms were isolated from oily sludge and petroleum-contaminated soil from Shengli oil field in north China. Sixteen of the bacterial isolates produced biosurfactants and reduced the surface tension of the growth medium from 71 to <30 mN m−1 after 72 h of growth. These bacteria were used to treat oily sludge and the recovery efficiencies of oil from oily sludge were determined. The oil recovery efficiencies of different isolates ranged from 39% to 88%. Bacterial isolate BZ-6 was found to be the most efficient strain and the three phases (oil, water and sediment) were separated automatically after the sludge was treated with the culture medium of BZ-6. Based on morphological, physiological characteristics and molecular identification, isolate BZ-6 was identified as Bacillus amyloliquefaciens. The biosurfactant produced by isolate BZ-6 was purified and analyzed by high performance liquid chromatography-electrospray ionization tandem mass spectrometry. There were four ion peaks representing four different fengycin A homologues.  相似文献   

15.
Hunpu is a wastewater-irrigated area southwest of Shenyang. To evaluate petroleum contamination and identify its sources at the area, the aliphatic hydrocarbons and compound-specific carbon stable isotopes of n-alkanes in the soil, irrigation water, and atmospheric deposition were analyzed. The analyses of hydrocarbon concentrations and geochemical characteristics reveal that the water is moderately contaminated by degraded heavy oil. According to the isotope analysis, inputs of modern C3 plants and degraded petroleum are present in the water, air, and soil. The similarities and dissimilarities among the water, air, and soil samples were determined by concentration, isotope, and multivariate statistical analyses. Hydrocarbons from various sources, as well as the water/atmospheric deposition samples, are more effectively differentiated through principal component analysis of carbon stable isotope ratios (δ13C) relative to hydrocarbon concentrations. Redundancy analysis indicates that 57.1 % of the variance in the δ13C of the soil can be explained by the δ13C of both the water and air, and 35.5 % of the variance in the hydrocarbon concentrations of the soil can be explained by hydrocarbon concentrations of both the water and the air. The δ13C in the atmospheric deposition accounts for 28.2 % of the δ13C variance in the soil, which is considerably higher than the variance in hydrocarbon concentrations of the soil explained by hydrocarbon concentrations of the atmospheric deposition (7.7 %). In contrast to δ13C analysis, the analysis of hydrocarbon concentrations underestimates the effect of petroleum contamination in the irrigated water and air on the surface soil. Overall, the irrigated water exerts a larger effect on the surface soil than does the atmospheric deposition.  相似文献   

16.

Heavy metal-contaminated sediments posed a serious threat to both human beings and environment. A biosurfactant, rhamnolipid, was employed as the washing agent to remove heavy metals in river sediment. Batch experiments were conducted to test the removal capability. The effects of rhamnolipid concentration, washing time, solution pH, and liquid/solid ratio were investigated. The speciation of heavy metals before and after washing in sediment was also analyzed. Heavy metal washing was favored at high concentration, long washing time, and high pH. In addition, the efficiency of washing was closely related to the original speciation of heavy metals in sediment. Rhamnolipid mainly targeted metals in exchangeable, carbonate-bound or Fe-Mn oxide-bound fractions. Overall, rhamnolipid biosurfactant as a washing agent could effectively remove heavy metals from sediment.

  相似文献   

17.
Petroleum ether was used to extract petroleum hydrocarbons from soils collected from six oil fields with different history of exploratory and contamination. It was capable of fast removing 76–94 % of the total petroleum hydrocarbons including 25 alkanes (C11–C35) and 16 US EPA priority polycyclic aromatic hydrocarbons from soils at room temperature. The partial least squares analysis indicated that the solvent extraction efficiencies were positively correlated with soil organic matter, cation exchange capacity, moisture, pH, and sand content of soils, while negative effects were observed in the properties reflecting the molecular size (e.g., molecular weight and number of carbon atoms) and hydrophobicity (e.g., water solubility, octanol–water partition coefficient, soil organic carbon partition coefficient) of hydrocarbons. The high concentration of weathered crude oil at the order of 105 mg kg?1 in this study was demonstrated adverse for solvent extraction by providing an obvious nonaqueous phase liquid phase for hydrocarbon sinking and increasing the sequestration of soluble hydrocarbons in the insoluble oil fractions during weathering. A full picture of the mass distribution and transport mechanism of petroleum contaminants in soils will ultimately require a variety of studies to gain insights into the dynamic interactions between environmental indicator hydrocarbons and their host oil matrix.  相似文献   

18.
The present study was carried out to isolate bacteria capable of producing biosurfactant that solublize endosulfan (6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro- 6,9-methano-2,4,3-benzodioxathiepine-3-oxide) and for enhanced degradation of endosulfan and its major metabolite endosulfate. The significance of the study is to enhance the bioavailability of soil-bound endosulfan residues as its degradation is limited due to its low solubility. A mixed bacterial culture capable of degrading endosulfan was enriched from pesticide-contaminated soil and was able to degrade about 80% of α-endosulfan and 75% of β-endosulfan in five days. Bacterial isolates were screened for biosurfactant production and endosulfan degradation. Among the isolates screened, four strains produced biosurfactant on endosulfan. ES-47 showed better emulsification of endosulfan and degraded 99% of endosulfan and 94% of endosulfate formed during endosulfan degradation. The strain reduced the surface tension up to 37 dynes/cm. The study reveals that the strain was capable of degrading endosulfan and endosulfate with simultaneous biosurfactant production.  相似文献   

19.
《Environmental Forensics》2002,3(3-4):219-225
Naturally weathered oil residues from an arid dumpsite in Al-Alamein, Egypt were analyzed for monoaromatic and triaromatic steranes to demonstrate the utility of biomarker compounds in assessing the chemical composition changes during the degradation of the released oil residues in a terrestrial environment. The characterizations of individual aromatic compounds were based on gas chromatography/mass spectrometry (GC/MS) analyses. The results showed that triaromatic sterane distributions were similar in the oil residues of varying weathering degradation extents and correlated with a fresh crude oil sample of the Western Desert-sourced oil. Molecular ratios of triaromatic sterane compounds (ratios of C2820R /C2820S, C2720R /C2820R, and C2820S /[C2620R + C2720S ]) were proved to be suitable for source identification. Major changes in chemical compositions during weathering of the oil residues were the depletion of short chain mono- and tri-aromatic steranes in samples that had undergone extensive degradation. The results of triaromatic sterane distribution are in good agreement with weathering classification based on the analyses of saturate and aromatic hydrocarbons and the ratios of n -alkanes, PAHs and saturate biomarker compounds.  相似文献   

20.
The emissions from the chimney of the Yatagan thermal power plant have caused a 3050-hectare forest to wither. Such air pollutants as sulfur dioxide, nitrogen oxides and fly ash are carried towards the Bencikdagi Calabrian pine forests on the prevailing north-east winds. To study these effects, the Q-Basic computer program developed for the Gaussian puff model was used with meteorological data provided by the Yatagan Meteorological Office and the pollutant loads formed by the thermal power plant. In the grid system on the map showing the surroundings of the thermal power plant, the concentrations of the pollutants in each grid square were determined. The Yatagan plant has three units containing 9000 mg/m3 sulfur dioxide, 1800 mg/m3 nitrogen oxides and 680 mg/m3 fly ash in its chimneys. The minimum pollutant emissions were found to be 100 μg/m3 SO2, 20 μg/m3 NOx2, and 77 μg/m3 NOx  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号