首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
This research looked at the need for ligno-cellulolytic inoculants (EM bacteria and Trichoderma sp.) in small to medium scale composting of household wastes. A mixture of household organic waste comprised of kitchen waste, paper, grass clippings and composted material was subjected to various durations of thermo composting followed by vermicomposting with and without microbial inoculants for a total of 28 days. The results revealed that ligno-celluloytic inoculants are not essential to speed up the process of composting for onsite small scale household organic waste treatment as no significant difference was observed between the control and those inoculated with Trichoderma and EM in terms of C:N ratio of the final product. However, it was observed that EM inoculation enhanced reproductive rate of earthworms, and so probably created the best environment for vermicomposting, in all treatment groups.  相似文献   

2.
Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery–distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain.  相似文献   

3.
This paper studies the feasibility of incorporating treated lignins in fiberboards made from Vitis vinifera as an agricultural waste. The treated lignins are the purified Kraft lignin and the alkaline hydrolyzed Kraft lignin. V. vinifera raw material and its fibers were characterized in terms of chemical composition and the results were compared to other biomass species. The chemical composition of treated lignins shows that they have high purity compared to the lignin raw material. The lignin-V. vinifera fibreboards were produced on laboratory scale by adding powdered treated lignins to the material that had previously been steam exploded. Some of the important properties of fibreboards prepared using the treated lignins as natural adhesives were evaluated. These properties were density, thickness swelling, water absorption, modulus of elasticity, modulus of rupture, internal bond strength. The explored levels of treated lignins vary from 5% to 20%. The results showed that binderless fibreboards, fibreboards made from V. vinifera fibers and alkaline hydrolyzed Kraft lignin have weaker mechanical properties. However, the fibreboards obtained using purified Kraft lignin have good mechanical and water resistance properties which satisfy the requirements of the relevant standards specifications.  相似文献   

4.
Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes were considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management.  相似文献   

5.
Municipal solid waste management (MSWM) constitutes one of the most crucial health and environmental problems facing authorities in the Arabian Gulf. Recent literature on current solid waste management (SWM) in Qatar has been reviewed in this paper, and a focused study has been carried out to provide a review on the total amount of municipal solid waste generated, stored, collected, disposed as well as the constituents of the waste. The analysis showed that Qatar produced around 2,000,000 tons of solid municipal waste annually, corresponding to a daily generation rate per capita of about 2.5 kg. About 60% of MSW is organic material and about 300 kg is composed daily. Landfill and composting is considered the most appropriate waste disposal techniques in Qatar. Um-Al-Afai landfill has nearly 80% of MSW. Because of the increased migration in Qatar, there is a sharp rise in the volume and also in the variety of solid waste. It is important to alleviate societal concerns over the increased rate of resource consumption and waste production; thus, policy makers have encouraged recycling and reuse strategies to reduce the demand for raw materials and to decrease the quantity of waste going to landfill. An example of the benefit of mechanical recycling of plastics compared to land filling and composting was conducted by GaBi 4 life cycle analysis tool which showed the benefits to the global warming and human toxicity. Recycling is the favored solution for plastic waste management, because it has a lower environmental impact on the defined impact categories, from Global Warming Potential (GWP) and Human Toxicity Potentials (HTP) indicators.  相似文献   

6.
Pretreatment of municipal solid waste prior to landfilling   总被引:5,自引:1,他引:4  
An outdoor pilot-scale study was undertaken to pretreat municipal solid waste by windrow composting. The raw waste was introduced to active composting without any source separation or pulverization. Pretreatment indicators were developed and used as a tool to measure the optimum level of sorting and waste stabilization. The moisture content of the waste dropped from 68% to 61% and the pile attained a thermophilic temperature in one week. It was observed that the C/N ratio, pH profile and temperature gradients were comparable to that of traditional windrow composting. Within one week of active bulk composting, the easily degradable organic matter was consumed and there was a significant reduction in the bulk volume of the mixed waste. The pre-composted wastes were then sorted into four fractions. Compared to the initial untreated waste, the pretreated waste showed greater sorting efficiency and reduced volatile solids. A 1-m3 cage was used to study pile settlement and volume reduction. The results indicate that pretreatment by bulk composting could reduce by ≈40% the total mass of waste hauled to landfill sites in developing countries.  相似文献   

7.
The effects of adding biosolids to a green waste feedstock (100% green waste, 25% v/v biosolids or 50% biosolids) on the properties of composted products were investigated. Following initial composting, 20% soil or 20% fly ash/river sand mix was added to the composts as would be carried out commercially to produce manufactured soil. Temperatures during composting reached 50 °C, or above, for 23 days when biosolids were included as a composting feedstock but temperatures barely reached 40 °C when green waste alone was composted. Addition of biosolids to the feedstock increased total N, EC, extractable NH4, NO3 and P but lowered pH, macroporosity, water holding capacity, microbial biomass C and basal respiration in composts. Additions of soil or ash/sand to the composts greatly increased the available water holding capacity of the materials. Principal component analysis (PCA) of PCR-DGGE 16S rDNA amplicons separated bacterial communities according to addition of soil to the compost. For fungal ITS-RNA amplicons, PCA separated communities based on the addition of biosolids. Bacterial species richness and Shannon’s diversity index were greatest for composts where soil had been added but for fungal communities these parameters were greatest in the treatments where 50% biosolids had been included. These results were interpreted in relation to soil having an inoculation effect and biosolids having an acidifying effect thereby favouring a fungal community.  相似文献   

8.
This study is concerned with the performance of a Demo Compost Plant for the development of acceptable composting technology in Bangladesh. The Demo Compost Plant was setup at the adjacent area of an existing compost plant located at Khulna city in Bangladesh. Four different composting technologies were considered, where Municipal Solid Waste (MSW) were used as a raw material for composting, collected from the adjacent areas of the plant. Initially the whole composting system was conducted through two experimental setups. In the 1st setup three different types of aerators (horizontal and vertical passively aerator and forced aerator) were selected. For a necessary observation four piles, using only MSW as the input materials in the first three compost pile, the fourth one was the existing Samadhan’s compost pile. Based on the analysis of the experimental findings, the horizontal passively aerated composting technique is suitable for Bangladesh as it had better performance for reducing composting period than that of the others. It was being observed from the quality parameters of compost in the both 1st and 2nd setup that as the waste directly come from kitchen, degradation rate of waste shows a positive result for reducing this waste and there is no possibility of toxic contamination, when it would be used as a soil conditioner. Though there is no significant improvement in the quality of the final product in the 2nd setup as comparing with the 1st setup but it fulfills one of the main objectives of this study is to reduce the whole composting period as well as immediate management of the increasing amount of waste and reducing load on landfill. Selfheating tests reveal that degree of stability of compost with respect to maturation period was remained in the acceptable level, which was further accelerated due to the use of organic additives.  相似文献   

9.
This article presents a mathematical model which describes the sodium chromate (VI) production process with the use of chromic waste as a substitution of natural raw materials. This model is a function of selected process parameters common for all of the examined alternatives and based on equations of material balance. Optimization of the elaborated technological alternatives of the production process with use of recycling of chromic waste has been evaluated by determining the extreme value of the quality indicator WJ. This indicator defines the quantity of waste created in the process. Optimization results enabled the selection of the optimal technological solution from all of the alternatives possible for use in industrial practice. Negative values of the indicator prove that there is the possibility of introducing to the process a larger quantity of waste than the one obtained in the process and transported to the storage heaps.  相似文献   

10.
Replacement of peat as a growing medium by a renewable material, such as an organic waste, is an issue of concern since harvesting of peat has a considerable environmental impact and, actually, it is a non-renewable resource. Cattle manure is a readily available organic waste, which means that once it goes through the composting process, it can be used as an alternative to peat, specifically, the solid fraction obtained from mechanical liquid-solid separation of cattle slurry (SF). Studies have shown it to be suitable for such uses. The purpose of this study was to detect possible changes in the physicochemical and chemical properties of SF when it is composted using different aeration strategies, with an emphasis on the changes that would make it feasible for use as a substrate. With this aim in mind, an experiment was designed with three aeration strategies that would be used during composting. The first consisted of applying air through a static method (forced ventilation). The second involved improving aeration by adding a bulking agent and a dynamic turning method. In the third strategy, aeration was carried out by turning (control). The results show that the different aeration strategies had a clear effect on the evolution of pH, electrical conductivity (EC), nitrate-N, ammonia-N and bicarbonate content. Nitrification was favored under good aeration conditions using the static composting method, probably due to the greater availability of ammonia-N that was transformed into nitrate-N. In general, the low buffering capacity allowed for a reduction of the pH during the curing stage of composting (in conjunction with low temperatures during this period), a characteristic that favors the use of this compost as a growing medium. We also conclude that measuring bicarbonate levels during composting could be used as an indicator of the possible acidification of the material and as a way of evaluating the level of material aeration.  相似文献   

11.
In order to carry out life-cycle assessments as a basis for far-reaching decisions about environmentally sustainable waste treatment, it is important that the input data be reliable and sound. A comparison of the potential greenhouse gas (GHG) emissions associated with each solid waste treatment option is essential. This paper addresses GHG emissions from controlled composting processes. Some important methodological prerequisites for proper measurement and data interpretation are described, and a common scale and dimension of emission data are proposed so that data from different studies can be compared. A range of emission factors associated with home composting, open windrow composting, encapsulated composting systems with waste air treatment and mechanical biological waste treatment (MBT) are presented from our own investigations as well as from the literature. The composition of source materials along with process management issues such as aeration, mechanical agitation, moisture control and temperature regime are the most important factors controlling methane (CH4), nitrous oxide (N2O) and ammoniac (NH3) emissions. If ammoniac is not stripped during the initial rotting phase or eliminated by acid scrubber systems, biofiltration of waste air provides only limited GHG mitigation, since additional N2O may be synthesized during the oxidation of NH3, and only a small amount of CH4 degradation occurs in the biofilter. It is estimated that composting contributes very little to national GHG inventories generating only 0.01-0.06% of global emissions. This analysis does not include emissions from preceding or post-treatment activities (such as collection, transport, energy consumption during processing and land spreading), so that for a full emissions account, emissions from these activities would need to be added to an analysis.  相似文献   

12.
The co-composting of solid residue from olive oil production process, exhausted olive cake (EOC), with poultry manure (PM) watered with olive mill wastewater (OMW) was considered as an efficient method for the treatment of olive oil extraction effluent having high organic content including phenolic polluting compounds. The process was carried out by using three aerated windrows of variable compositions. OMW was used continuously during the bio-oxidative period, which lasted three months, to replace water for windrow moistening. The main process parameters (temperature, pH, humidity and C/N) were monitored over four months to ascertain the maturity of the compost. The composting process lasted four months during which 26 moistenings of the mixtures were performed with OMW or water to keep moisture within the ideal range of 45-60% (w/w). At the maturity stage, the C/N ratios were less than 16, pH of the resulting products were slightly alkaline (pH=8) and electrical conductivity was relatively high in the OMW mixtures (5.46-5.48 Sm(-1)) when compared with water application. Nitrates increased (0.16-0.42%) and phenol contents were reduced by more than 49%. Mature composts were then used as an amendment for potato production in a field where no inhibitory effect was observed. Potato productivity increased 10-23% as a result of compost application. No noticeable negative impact of OMW on the soil system was observed. Phenolic compound concentrations in the stabilised composts were comparable in the three studied mixtures (different sites) and averaged 0.24%. Considering previous results and this three year study, it has been observed that the benefit of these composts demonstrated the potential sustainable agronomic production of potato while using locally available recycled organic materials.  相似文献   

13.
The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60 °C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (EC), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., EC = 10% and 20%). It was found that the larger the EC, the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions.  相似文献   

14.
A cross-linked polyacrylate polymer, referred to as absorbent gelling material (AGM), has been developed for use in hygiene paper products, such as infant diapers (nappies). The fate and effects of this polymer were studied in laboratory models of landfill and aerobic composting. Radiolabelled (14C) AGM was used to facilitate determination of fate and mass balance. Tests were conducted in 1201 reactors containing a mixture of solid waste and compost or solid waste only, and panty diaper pads. Controlled temperature and leachate recycle were used to accelerate the biological processes. AGM caused no adverse effects and most of the material remained associated with the diaper pad and surrounding waste. Very little AGM (less than 1%) biodegraded to CO2/CH4 under landfill conditions, while 2-4% appeared in leachate. The leachate was highly biodegradable aerobically. More of the AGM (6.4%) biodegraded to CO2/CH4 under aerobic composting conditions, while less than 1% appeared in leachate.  相似文献   

15.
The aim of this work was to study the effect of composting on the viability of plant pathogenic fungi and bacteria. The research consisted of pilot-scale composting of horticultural waste in compost windrows. Studies were carried out on vegetable residues infected with plant pathogenic microorganisms included by either integrated or localized infection. In the first case, the plant pathogen viability was investigated when infected material was mixed throughout compost, while the localized infection was used to study the effect of the composting process on plant waste spot-inoculated with pathogenic microorganisms. Results for localized sanitation showed the total elimination of all tested phytopathogens between 48 and 120 h after composting began. In this case significant differences were observed in relation to 9 different zones in the pile. The disappearance of these microorganisms was similar when all plant waste included in the windrow was infected (integrated infection). Additionally, the results obtained confirmed that the bacteria showed a greater capacity to persist during composting than the fungi. Composting is therefore considered a useful method for recycling horticultural waste and eliminating phytopathogenic bacteria and fungi that inhabit this kind of residue.  相似文献   

16.
The odour impact of a composting plant situated in an urbanized area was evaluated by continuously monitoring the ambient air close to the plant during a period of about 4 days using two electronic noses. One electronic nose was installed in a nearby house, and the other one inside the perimeter of the composting plant in order to compare the response of both instruments. The results of the monitoring are represented by tables that report the olfactory class and the odour concentration value attributed to the analyzed air for each of the 370 measurements carried out during the monitoring period. The electronic nose installed at the house detected the presence of odours coming from the composting plant for about 7.8% of the monitoring total duration. Of the odour detections, 86% (25 of 29 measurements) were classified as belonging to the olfactory class corresponding to the open air storage of the waste screening overflows heaps, which was therefore identified to be the major odour source of the monitored composting plant. In correspondence of the measurements during which the electronic nose inside the house detected the presence of odours from the composting plant, the olfactory classes recognized by both instruments coincide. Moreover, the electronic nose at the house detected the presence of odours from the composting plant at issue in correspondence of each odour perception of the house occupants. The results of the study show the possibility of using an electronic nose for environmental odours monitoring, which enables the classification of the quality of the air and to quantify the olfactory nuisance from an industrial source in terms of duration and odour concentration.  相似文献   

17.
The mass and element balance in municipal solid waste composting facilities that handle food waste was studied. Material samples from the facilities were analyzed for moisture, ash, carbon, nitrogen, and the oxygen consumption of compost and bulking material was determined.Three different processes were used in the food waste composting facilities: standard in-vessel composting, drying, and stand-alone composting machine. Satisfactory results were obtained for the input/output ash balance despite several assumptions made concerning the quantities involved. The carbon/nitrogen ratio and oxygen consumption values for compost derived only from food waste were estimated by excluding the contribution of the bulking material remaining in the compost product. These estimates seemed to be suitable indices for the biological stability of compost because there was a good correlation between them, and because the values seemed logical given the operating conditions at the facilities.  相似文献   

18.
In this work the dynamics of biochemical (enzymatic activities) and chemical (water-soluble fraction) parameters during 100 days of municipal solid wastes composting were studied to evaluate their suitability as tools for compost characterization. The hydrolase (protease, urease, cellulase, beta-glucosidase) and dehydrogenase activities were characterized by significant changes during the first 2 weeks of composting, because of the increase of easily decomposable organic compounds. After the 4th week a "maturation phase" was identified in which the enzymatic activities tended to gently decrease, suggesting the stabilisation of organic matter. Also the water-soluble fractions (water-soluble carbon, nitrogen, carbohydrates and phenols), which are involved in many degradation processes, showed major fluctuations during the first month of composting. The results obtained showed that the hydrolytic activities and the water-soluble fractions did not vary statistically during the last month of composting. Significant correlations between the enzymatic activities, as well as between enzyme activities and water-soluble fractions, were also highlighted. These results highlight the suitability of both enzymatic activities and water soluble fractions as suitable indicators of the state and evolution of the organic matter during composting. However, since in the literature the amount of each activity or fraction at the end of composting depends on the raw material used for composting, single point determinations appear inadequate for compost characterization. This emphasizes the importance of the characterization of the dynamics of enzymatic activities and water-soluble fractions during the process.  相似文献   

19.
In this study we observed the production of volatile fatty acids (VFAs) during the composting process of compost heaps in two different bioreactors (open and closed) at three different depths (0, 40 and 80 cm). The compost was prepared as a mixture of bio-waste, horse manure, grass and sawdust to ensure sufficient pH conditions in compost heaps. VFA contents in the composting materials were analysed weekly over 14–119 d. The degradation process was monitored, along with temperature, pH, total organic carbon, oxidizable carbon and mono- and oligosaccharides. VFA contents were evaluated with regard to the depth of the sample site in the compost heap and to conditions in the bioreactors. The maximum VFA occurrence was observed during the first 35 d; acetic and propionic acids in particular were determined to occur in each sample. Considerable variations in their formation and elimination were observed in the two bioreactors as well as at the various depths in the compost heaps. Significant correlations were found between individual VFAs, as well as between VFA concentrations and organic carbon contents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号