首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of swine wastewater to the soil for agricultural purposes results in the addition of total and dissolved organic matter to the soil, which may interfere with the dynamics of pesticides in the soil. The objective of this study was to evaluate the effects of the application of total and dissolved organic matter from a biodigester and a treatment lagoon of swine wastewater in the adsorption and desorption of alachlor [2-chloro-2,6-diethyl-N(methoxymethyl acetamide)]. The assay was performed by the batch equilibrium method, and the results were fitted to the Freundlich model. The curve comparison test revealed a greater adsorption of alachlor in the soil treated with swine wastewater from the biodigester. The adsorption and desorption of alachlor increased in the soils where swine wastewater was added, and hysteresis was observed in all of the treatments.  相似文献   

2.
An C  Huang G  Yu H  Wei J  Chen W  Li G 《Chemosphere》2010,81(11):1423-1429
The effects of five short-chain organic acids (SCOAs) on the behaviors of pyrene in soil-water system were investigated. The influences of the quantity and species of organic acids, pH, and soil dissolved organic matter were considered. The results showed the presence of SCOAs inhibited the adsorption and promoted the desorption of pyrene in the following order: citric acid>oxalic acid>tartaric acid>lactic acid>acetic acid. The decreased extents of pyrene adsorption performance enhanced with increasing SCOA concentrations, while the decreasing rate became less pronounced at high SCOA concentrations. In the presence of organic acids, the adsorption ability of pyrene decreased with increasing pH. However, there was a slight increase of pyrene adsorption with the addition of oxalic acid, tartaric acid and citric acid above pH 8. The capacity for pyrene retention differentiated significantly between the soils with and without dissolved organic matter. The presence of SCOAs was also favorable for the decrease of pyrene adsorption on soil without dissolved organic matter. The results of this study have important implications for the remediation of persistent organic pollutants in soil and groundwater.  相似文献   

3.
《Chemosphere》2011,82(11):1423-1429
The effects of five short-chain organic acids (SCOAs) on the behaviors of pyrene in soil–water system were investigated. The influences of the quantity and species of organic acids, pH, and soil dissolved organic matter were considered. The results showed the presence of SCOAs inhibited the adsorption and promoted the desorption of pyrene in the following order: citric acid > oxalic acid > tartaric acid > lactic acid > acetic acid. The decreased extents of pyrene adsorption performance enhanced with increasing SCOA concentrations, while the decreasing rate became less pronounced at high SCOA concentrations. In the presence of organic acids, the adsorption ability of pyrene decreased with increasing pH. However, there was a slight increase of pyrene adsorption with the addition of oxalic acid, tartaric acid and citric acid above pH 8. The capacity for pyrene retention differentiated significantly between the soils with and without dissolved organic matter. The presence of SCOAs was also favorable for the decrease of pyrene adsorption on soil without dissolved organic matter. The results of this study have important implications for the remediation of persistent organic pollutants in soil and groundwater.  相似文献   

4.
The present study focuses on the analysis of two vermicomposts, that have been used as alternative sources of restitution of soil organic matter, as well as sources of nutrient replacements. For this purpose, two samples of vermicomposts from different Brazilian regions (S?o Carlos-SP and Londrina-PR) were characterized according to their humic acid content. Both samples had a pH value near 7.0, and the humic acids present showed high cationic exchange capacities and low values for the C/N ratios. The infrared spectra showed bands that suggested the presence of aliphatic and aromatic components bound to phenolic, carboxylic and amide groups. The effect of vermicompost added to soil on the application of alachlor was evaluated. Alachlor sorption, Freundlich isotherms and alachlor desorption curves in the soil matrix and the vermicompost/soil mixture matrix were determined.  相似文献   

5.
Excess boron is a growing environmental problem. It often affects agricultural yields, where reuse of wastewater for irrigation is practiced. This problem raises the need for reliable, simple and economical methods to monitor boron concentrations in wastewater and soil extracts. One such method, the commonly used azomethine-H spectrophotometric method, suffers from color interference, originating from high concentrations of dissolved organic matter, when applied to many wastewater and agricultural soil extracts. Moreover, this method only quantifies free dissolved boron and lacks the ability to quantify boron that is adsorbed to either the dissolved organic matter or suspended solids that are present in the sample. This work suggests a modification of the standard azomethine-H method, in which the solution is digested with potassium persulfate prior to the standard procedure. We show that this pretreatment can overcome the color interference and lead to highly accurate and precise boron analyses in wastewater. In soil extracts, the boron concentrations obtained using the suggested procedure were better correlated to inductively coupled plasma (ICP) spectrometry results than those measured by the standard method, because whereas the standard method quantifies the free dissolved boron only, the modified method, like the ICP method, quantifies the total dissolved boron in the sample. Thus, the suggested modification can be used to quantify the respective distributions of free dissolved boron, boron adsorbed to dissolved organic matter and boron adsorbed to suspended solids in soil extracts and water samples.  相似文献   

6.
In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers’ breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils’ hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.  相似文献   

7.
In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers' breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils' hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.  相似文献   

8.
Use of animal manure is a main source of veterinary pharmaceuticals (VPs) in soil and groundwater through a series of migration processes. The sorption–desorption and transport of four commonly used VPs including trimethoprim (TMP), sulfapyridine, sulfameter, and sulfadimethoxine were investigated in three soil layers taken from an agricultural field in Chongming Island China and two types of aqueous solution (0.01 M CaCl2 solution and wastewater treatment plant effluent). Results from sorption–desorption experiments showed that the sorption behavior of selected VPs conformed to the Freundlich isotherm equation. TMP exhibited higher distribution coefficients (K d?=?6.73–9.21) than other sulfonamides (K d?=?0.03–0.47), indicating a much stronger adsorption capacity of TMP. The percentage of desorption for TMP in a range of 8–12 % is not so high to be considered significant. Low pH (<pK a of tested VPs) and rich soil organic matter (e.g., 0–20 cm soil sample) had a positive impact on sorption of VPs. Slightly lower distribution coefficients were obtained for VPs in wastewater treatment plant (WWTP) effluent, which suggested that dissolved organic matter might affect their sorption behavior. Column studies indicated that the transport of VPs in the soil column was mainly influenced by sorption capacity. The weakly adsorbed sulfonamides had a high recovery rate (63.6–98.0 %) in the leachate, while the recovery rate of TMP was only 4.2–10.4 %. The sulfonamides and TMP exhibited stronger retaining capacity in 20–80 cm and 0–20 cm soil samples, respectively. The transport of VPs was slightly higher in the columns leached by WWTP effluent than by CaCl2 solution (0.01 M) due to their sorption interactions.  相似文献   

9.
A soil column adsorption–desorption study was performed on an agricultural calcareous soil to determine the impact of sewage sludge spreading on nickel mobility. Ni adsorption experiments were followed by desorption tests involving the following liquid extractants: water, calcium (100 mg/L), oxalic acid (525 mg/L equivalent to 100 mg carbon/L), and sludge extracts (0.5 and 2.5 g/L). Desorption tests were also conducted after sewage sludge spreading at three application rates (30, 75, and 150 t/ha). According to the breakthrough curve, Ni adsorption was irreversible and occurred mainly through interactions with calcite surface sites. Nickel desorption from the soil column was promoted in presence of significant dissolved organic carbon (DOC) concentration as observed with oxalic acid elution and sludge extract at 2.5 g/L. In sludge-amended soil columns, the maximum Ni levels occurred in first pore volumes, and they were positively correlated to the sludge application rate. The presence of DOC in leaching waters was the main factor controlling Ni desorption from the sludge-amended soil columns. This finding implies that DOC generated by sludge applied on calcareous soils might facilitate the leaching of Ni due to the formation of soluble Ni–organic complexes. Thus, sludge application can have potential environmental impacts in calcareous soils, since it promotes nickel transport by decreasing Ni retention by soil components.  相似文献   

10.
Different methods (batch, column and stirred flow chamber experiments) used for adsorption and desorption of carbofuran studies were compared. All tested methods showed that the carbofuran adsorption was higher in the soil with the higher organic matter content, whereas the opposite behaviour was observed for the percentage of carbofuran desorbed. However, different methods have revealed some discrepancies in carbofuran adsorption/desorption kinetics. Although batch method showed interesting data on equilibrium experiments, such as a low heterogeneity for the carbofuran adsorption sites independent of soil organic matter content, it had some disadvantages for carbofuran adsorption/desorption kinetic studies. The disadvantages were related with the excessive limitations of this method on kinetics, i.e., no difference could be detected between different soils. However, with column and stirred flow chamber methods the carbofuran adsorption/desorption kinetics of different soils could be compared. Moreover, the absolute values of carbofuran adsorption/desorption and its rate were higher in the stirred flow chamber than in the batch and column experiments. Using stirred flow chamber experiments the carbofuran desorption was significantly faster than its adsorption, whereas carbofuran using column experiments they were similar. These discrepancies should be considered when the results obtained only with one method is discussed.  相似文献   

11.
Effect of organic acids on adsorption and desorption of rare earth elements   总被引:12,自引:0,他引:12  
Shan XQ  Lian J  Wen B 《Chemosphere》2002,47(7):701-710
Effect of citric, malic, tartaric and acetic acids on adsorption of La, Ce, Pr and Nd by and desorption from four typical Chinese soils was studied. Generally, adsorption capacities of rare earth elements (REEs) were significantly correlated with the cation exchange capacity (CEC) of soils. In the presence of acetic acids adsorption of REEs was similar to that in the presence of Ca(NO3)2. However, in the presence of citric, malic and tartaric acids adsorption of REEs by Heilongjiang, Zhejiang and Guangdong soils decreased to varying extents if compared with that in the presence of nitrate and acetic acid. The significance of suppression followed the order of citric acid > malic acid > tartaric acid > acetic acid, which was consistent with the order of stability of complexes of REEs with these organic acids. However, the adsorption increased with increasing equilibrium solution pH. For Jiangxi soil with low soil pH, CEC and organic matter these organic acids exerted an even more serious suppression effect on the adsorption of REEs. Another feature of the relationship between the adsorption of REEs and equilibrium solution pH was that the adsorption of REEs decreased with increase of pH from 2 to 4.5 and then slightly increased with further increase of pH. Desorption of REEs varied with soils and with organic acids as well. REEs were released easily from Heilongjiang, Zhejiang and Guangdong soils in the presence of organic acid. Generally, desorption of REEs decreased with increasing equilibrium solution pH. Effect of organic acids on desorption of REEs from Jiangxi soil was more complicated. In the presence of citric and malic acids no decrement and/or slight increase in desorption of REEs were observed over the equilibrium solution pH from 3 to 6.5. The reasons for this were ascribed to the strong complexing capacity of citric and malic acids and low soil pH, CEC and organic matter of Jiangxi soil.  相似文献   

12.
Dahiya S  Shanwal AV  Hegde AG 《Chemosphere》2005,60(9):1253-1261
Zinc adsorption was studied in the soils of three nuclear power plant sites of India. 65Zn was used as a radiotracer to study the sorption characteristics of Zn(II). The sorption of zinc was determined at 25 and 45 degrees C at pH 7.8+/-0.2 in the solution of 0.01 M Ca(NO3)2 as supporting electrolyte. The sorption data was tested both in Freundlich and Langmuir isotherms and could be described satisfactorily. The effect of organic matter and other physico-chemical properties on the uptake of zinc was also studied in all the soil samples. The results showed that the cation exchange capacity, organic matter, pH and clay content were the main contributors to zinc sorption in these soils. The adsorption maximum was found to be higher in the soil on Kakarpara Atomic Power Plant sites soils having high organic matter and clay content. The zinc supply parameters of the soils are also discussed. In the desorption studies, the sequential extraction of the adsorbed zinc from soils showed that the diethylene triamine penta acetic acid extracted maximum amount of adsorbed zinc than CaCl2 and Mg(NO3)2. The zinc sorption on the soil and amount of zinc retention after extractants desorption shows a positively correlation with vermiculite and smectite mineral content present in the clay fraction of the soil. The amount desorbed by strong base (NaOH) and demineralised water was almost negligible from soils of all the sites, whereas the desorption by strong acid (HNO3) was 75-96% of the adsorbed zinc.  相似文献   

13.
Biodegradable dissolved organic carbon (BDOC) analyses and abiotic adsorption of dissolved organic carbon (DOC) from different wastewater effluent were conducted to evaluate biotic and abiotic removal mechanisms as a function of the initial DOC concentration and source of DOC using soil batch reactors. To obtain high DOC concentrations, a laboratory-scale reverse osmosis unit was used. It was found that BDOC fraction was independent of the initial DOC concentration and was dependent on the source of wastewater and/or the types of wastewater treatment. The BDOC fractions varied from 9 to 73%. Trickling filter effluent (Tucson, Arizona) showed the highest BDOC, ranging from 65 to 73% biodegradable, while wastewater treated by the soil aquifer treatment (SAT) (NW-4) was found to be most refractory, with DOC removals of 9 to 14%. For nitrified/denitrified tertiary effluent (Mesa, Arizona) and secondary effluent (Scottsdale, Arizona), 36 to 42% removal of DOC was observed during the BDOC test. The amount of BDOC in the wastewater depended not on the concentration of DOC, but on the effectiveness of pretreatment. Abiotic adsorption capacity of wastewater effluent varied from 6 to 18%. Molecular weight distribution analyses showed that more than 50% of DOC in the Scottsdale concentrate had a molecular weight of less than 1000 Da, and no significant change in distribution profiles occurred after approximately 12% abiotic adsorption with both soils with acclimated microorganisms (SAT soil) and soils without acclimated microorganisms (non-SAT soils). Hence, preferential adsorption was not observed and the presence of acclimated microbes did not influence adsorption.  相似文献   

14.
The impact of contact time on pyrene sorptive behavior by a sandy-loam soil   总被引:7,自引:0,他引:7  
Batch experiments with pyrene (PYR) were conducted to quantify the effect of contact time on its sorption and desorption behavior by a sandy-loam soil. Twenty-four and 48 h contact times were chosen for the nonequilibrium conditions and 240 h for the pseudoequilibrium study. All times was selected based on the kinetic results. The nonlinear, pseudoequilibrium sorption isotherm was fit to a two-stage Freundlich model: 3-7 mg/l for the first stage and 7-15 mg/l for the second stage. A substantial fraction of the sorbed PYR was not desorbed within the given desorption time. The reason of hysteresis was found to be a sorption enhancement due to soil hydration which provided more sorption sites. A desorption enhancement at 240-h desorption steps was attributed to the increased dissolved organic matter evolution. This study also found that both soil organic matter and clay materials had an equal role in PYR sorption enhancement and desorption resistance.  相似文献   

15.
The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, 29Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4?7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90 %, respectively.  相似文献   

16.
A study was conducted to determine the adsorption/desorption of butachlor, myclobutanil and chlorpyrifos on five soils using a batch equilibration technique and to study the relationship between bioavailability to Allolobophora caliginosa and the adsorption/desorption of these three pesticides. The results showed that the adsorption/desorption processes of the tested compounds were mainly controlled by soil organic matter content (OM) and octanol/water-partitioning coefficient (K(ow)), and that the bioavailability of the pesticides was dependent on characteristics of pesticides, properties of soils, and uptake routes of earthworms. Bioconcentration of butachlor and myclobutanil was negatively correlated with Freundlich adsorption constant K(af) and K(df). However, only a slightly positive correlation between bioconcentration and K(af) and K(df) was observed for chlorpyrifos due to its high affinity onto soil.  相似文献   

17.
土壤有机质对铊在土壤中吸附-解吸行为的影响   总被引:3,自引:0,他引:3  
研究了土壤有机质对Tl+在红壤和黄土2种土壤中的吸附-解吸行为的影响。结果表明,去除土壤有机质后红壤和黄土对Tl+的吸附量均明显下降,下降幅度最高分别达到24.7%和28.2%,黄土的下降幅度大于红壤;黄土对Tl+吸附率最高下降幅度约为20%,也高于红壤的15%。土壤有机质对Tl+吸附的贡献率平均值分别是黄土39.2%、红壤32.8%。2种土壤对Tl+的解吸量在去除有机质之后都明显增大,在初始Tl+浓度较高的情况下,增大幅度明显;并且Tl+的初始浓度越高,土壤在去有机质前后的解吸率相差就越大,在Tl+最大处理浓度为20 mg/L时,红壤和黄土的解吸率增加分别达到60.8%和65.5%。  相似文献   

18.
The adsorption, desorption, and mobility of permethrin in six tropical soils was determined under laboratory and greenhouse conditions. The six soils were selected from vegetable growing areas in Malaysia. Soil organic matter (OM) was positively correlated (r2 = 0.97) with the adsorption of permethrin. The two soils, namely, Teringkap 1 and Lating series with the highest OM (3.2 and 2.9%) released 32.5 and 30.8% of the adsorbed permethrin after four consecutive repetitions of the desorption process, respectively, compared to approximately 75.4% of the Gunung Berinchang soil with the lowest OM (1.0%) under the same conditions. The mobility of permethrin down the soil column was inversely correlated to the organic matter content of the soil. Permethrin residue penetrated only to the 10-15 cm zone in the Teringkap 1 soil with 3.2% OM but penetrated to a depth of more than 20 cm in the other soils. The Berinchang series soil with the lowest OM (1.0%) yielded leachate with 14.8% permethrin, the highest level in leachates from all the soils tested. Therefore, the possibility for permethrin to contaminate underground water may be greater in the presence of low organic matter content, which subsequently allows a higher percentage of permethrin to move downwards through the soil column.  相似文献   

19.
An attempt has been made to elucidate the effects of soil properties on arsenate adsorption by modeling the relationships between adsorption capacity and the properties of 16 Chinese soils. The model produced was validated against three Australian and three American soils. The results showed that nearly 93.8% of the variability in arsenate adsorption on the low-energy surface could be described by citrate-dithionite extractable Fe (Fe(CD)), clay content, organic matter content (OM) and dissolved organic carbon (DOC); nearly 87.6% of the variability in arsenate adsorption on the high-energy surface could be described by Fe(CD), DOC and total arsenic in soils. Fe(CD) exhibited the most important positive influence on arsenate adsorption. Oxalate extractable Al (Al(OX)), citrate-dithionite extractable Al (Al(CD)), extractable P and soil pH appeared relatively unimportant for adsorption of arsenate by soils.  相似文献   

20.
Wang SQ  Zhou DM  Wang YJ  Chen HM 《Chemosphere》2003,51(2):77-83
A study was carried out of Cu adsorption and desorption processes in red soil as affected by o-phenylenediamine (o-PD) in the range 0-80 mg/l. The results indicated that the presence of o-PD enhanced Cu adsorption in red soil in weakly acid media, meanwhile, desorption percentage of Cu from soil, extracted by 1.0 M MgCl(2), also increased when Cu adsorption in soil occurred in the presence of o-PD. The response of paddy rice to Cu in red soil shows that Cu toxicity was mitigated in the presence of o-PD and that the Cu concentration in rice straw decreased with increasing concentration of o-PD from 0 to 4.0 mmol/kg in soil. The fractions of background Cu in soil did not change noticeably in the presence of o-PD, whereas the effect of o-PD on the fractions of added Cu was significant. It was found that the exchangeable and carbonate bound Cu fractions decreased and the fraction of Cu bound to Fe-Mn oxides and organic matter increased with increasing o-PD concentration in soil when Cu was added at the same rate. Copper concentration in rice straw was significantly correlated with exchangeable Cu (r=0.961) and carbonate bound Cu (r=0.959) in soil. This result implicates that the behavior of Cu in soil is likely to be affected by organic pollutants containing amino groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号