首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine a suite of four metals (Fe, Mn, Zn, Cu) in the sediment, porewater and a pioneer plant (Juncus bulbosus) of Lusatian lignite mining lakes in eastern Germany. An attempt was made to understand the factors which affect element concentrations in the above- and below-ground biomass of Juncus bulbosus in an extreme environment. Water samples, sediments, porewater and plant material collected from two different mining lakes dominated by Juncus bulbosus species were analyzed for their elemental content. Additionally, scanning electron microscopy (SEM) and an energy-dispersive X-ray (EDX) detector were used to follow the internal metal distribution in the roots of Juncus plant. Results showed that sediment and porewater element concentrations in the lakes decreased in the order Fe > Mn > Zn and Cu. All the four elements were higher in the roots than in above-ground tissues, suggesting that iron plaque induced on roots under anaerobic conditions served as a metal reservoir, but not as an ultimate mechanism to control metal concentrations in the above-ground tissues. SEM and EDX analyses revealed that the rhizodermis, exodermis and endodermis cells regulate the traffic of transition metals and therefore avoid excess levels that are toxic to the plant in acidic mining-impacted lake sediments.  相似文献   

2.
Microorganisms are responsible for the bulk of transformations that occur in surficial sediments. They are most active at redox boundaries where they can benefit from access to various oxidants and reductants generated during redox cycling events. To illustrate the dynamics of microbially mediated processes, especially those involving sulfur and metal cycles, processes were compared in habitats either bioturbated by a capitellid worm or inhabited by a salt marsh grass. The presence of macrofauna and macroflora greatly altered the three-dimensional array of redox gradients in sediments, but the type and form of reductants and oxidants provided varied greatly; clastic sedimentary infauna subducted solid phase organic material and iron oxides, whereas plant roots released dissolved organic matter and oxygen. These differences resulted in a bioturbated system that exhibited a rapid sulfur cycle (residence time of minutes), but a slower iron cycle (days), whereas vegetation caused a slow sulfur cycle and rapid iron cycle. Alteration of sediments by higher life forms also greatly affected the composition and relative abundances of sedimentary bacteria, even on short time scales. Although redox cycling at interfaces can be somewhat predictable, variations in response to biological and physical perturbations demonstrated wide differences in the dynamics of redox-mediated processes.  相似文献   

3.
The present work deals with the application of biotechnology for the mobilization of metals from different solid wastes: end of life industrial catalysts, heavy metal contaminated marine sediments and fluorescent powders coming from a cathode ray tube glass recycling process. Performed experiments were aimed at assessing the performance of acidophilic chemoautotrophic Fe/S-oxidizing bacteria for such different solid matrices, also focusing on the effect of solid concentration and of different substrata. The achieved results have evidenced that metal solubilization seems to be strongly influenced by the metal speciation and partitioning in the solid matrix. No biological effect was observed for Ni, Zn, As, Cr mobilization from marine sediments (34%, 44%, 15%, 10% yields, respectively) due to metal partitioning. On the other hand, for spent refinery catalysts (Ni, V, Mo extractions of 83%, 90% and 40%, respectively) and fluorescent powders (Zn and Y extraction of 55% and 70%, respectively), the improvement in metal extraction observed in the presence of a microbial activity confirms the key role of Fe/S oxidizing bacteria and ferrous iron. A negative effect of solid concentration was in general observed on bioleaching performances, due to the toxicity of dissolved metals and/or to the solid organic component.  相似文献   

4.
Sediment cores collected in eutrophic subalpine Lake Bled (NW Slovenia) were analyzed sedimentologically in terms of grain size, mineralogy and sedimentation rates, and geochemically in terms of metals and nutrients. Surficial sediment is composed of dark gyttya type clayey silt with 5%–10% of organic matter. The sediment below is fine laminated and composed of homogenous silt and clayey silt: Mineralogically, low-Mg calcite prevails, followed by dolomite, quartz, partially of diatomaceous origin, and feldspar. Clay minerals are composed of muscovite/illite and chlorite. Authigenic minerals are pyrite and ‘lake chalk’ (low-Mg calcite). Lake sediment is especially polluted by Pb, Zn and P. Higher contents were found in the northwestern and eastern parts due to the particle input by local inflows. Increasing eutrophication and pollution, indicated by Cd, Cu, V, Cr, Co and total N and P enrichment in the top layers of the cores, started almost 100 years B.P., and especially 50 years ago.  相似文献   

5.
The cycling of iron and sulfur in mine tailings depends on various chemical and microbial reactions. The present study was undertaken in order to assess the role played by populations of sulfate-reducing bacteria (SRB) on the fate of Fe and SO4 2- in Cu–Zn and Au tailings. Samples were taken along a 50-cm deep profile at all sites and analyzed for SRB populations, solid-phase mineralogy and porewater geochemistry. Results indicated that the Cu–Zn tailings were highly oxidized near the surface, as shown by the very low pH, high redox potential, large concentrations of soluble Cu, Zn and sulfate in the porewaters, and the depletion of pyrite. On the other hand, Au tailings were more pH neutral, slightly anoxic, and showed low concentrations of Fe and SO4 2- in the porewaters and very little pyrite oxidation. SRB populations in the Cu–Zn tailings increased with depth, just below the oxic/anoxic interface and were linked to a decline of sulfate and DOC concentrations around the same depths. However, large concentrations of dissolved Fe were also observed around the same depth intervals. Our results suggest that SRB could be involved in sulfate reduction in the Cu–Zn tailings, because the solubility of sulfate was not controlled by the precipitation of sulfate-rich minerals. However, the presence of soluble Fe in the reduced portion of the tailings was also indicative of the presence of iron reducing bacteria (IRB). These bacteria were not enumerated in the present study, but their co-occurrence with SRB has been reported in the past in similar mining environments. The decline of sulfate and the release of soluble iron into the porewaters were also paralleled by a pH increase and the generation of alkalinity. In the Au tailings, SRB populations were generally constant throughout the depth profile and could not be ascribed to sulfate reduction in the porewaters. The solubilities of sulfate and iron in these tailings were partially controlled by jarosite and Fe-oxide minerals. It is then clear that SRB populations could be recovered from various mining sites, but their activity cannot be ascertained based on microbial enumeration and geochemical data.  相似文献   

6.
Cootes Paradise is a coastal wetland, adjacent to Hamilton Harbour at the western tip of Lake Ontario. The marsh has been considerably degraded due to the excessive sediment and nutrient input from sewage treatment plants (STPs), marsh tributaries and Combined Sewer Overflows (CSOs). Although there has been reduction in nutrient loadings from external sources, high nutrient levels, and a prolific algal growth remain a problem in Cootes Paradise. To assess the importance of external versus internal nutrient loadings to the marsh, nutrient fluxes from sediments were estimated using porewater profiles at three locations from 2001 and five additional sites from 2002. The fluxes varied between 0.27 and 5.25 mg P m−2 day−1, with sites receiving outfalls of STP and CSO having highest fluxes (∼5 mg P m−2 day−1). Mean phosphorus release rate of 2.02 mg P m−2 day−1 was calculated from the spatial distribution of the non-apatite inorganic phosphorus (NAI-P) in sediments, employing a relationship between the NAI-P and P fluxes. The results confirm that sediment P geochemistry is important in regulating the P pool in porewater which, consequently, governs the P fluxes from sediments.  相似文献   

7.
The process of eutrophication in form of intense plant growth has been observed in some lakes and water streams at the Plitvice Lakes National Park in central Croatia. Here we investigate whether this phenomenon is a consequence of anthropogenic pollution or due to naturally produced organic matter in the lakes. We applied chemical analysis of water at two springs and four lakes (nutrients, dissolved organic carbon (DOC), trace elements) and measurements of surface lake sediments (mineral and organic fraction analyses, trace elements) in four different lakes/five sites. The chemical composition of water does not indicate recent anthropogenic pollution of water because the concentrations of most trace elements are below detection limits. The concentrations of DOC and nutrients are slightly higher in the area of increased eutrophication-plant growth. Also the content of organic matter in the sediment is at the highest level in areas with highest C/N ratio indicating that the organic fraction of this sediment is mainly of terrestrial origin. There is no significant difference among the trace element concentration in the upper segment of all cores, deposited approximately during last 50 years when higher anthropogenic influence is expected due to development and touristic activity, and the lower part of the cores, corresponding to the period approximately 100–200 years before present. The content of trace elements and organic matter in sediments decreases from the uppermost lake downstream. According to our results there is no indication of recent anthropogenic pollution in water and sediment. Higher concentrations of DOC in water as well as phosphorus and some other elements in the lake sediment can be a consequence of input of natural organic matter to the lake water.  相似文献   

8.
Increasingly wetlands are used for treatment of metal-contaminated water or as a cover over metal-enriched mine tailings. Natural wetlands may also be contaminated with metals from anthropogenic sources. While wetland conditions tend to be favorable for immobilization of metals, wetland plants could influence metal mobility through redox and pH processes in the rhizosphere. Our current knowledge of these processes is reviewed, focusing on the question of whether the advantages of growing wetland plants in metal-contaminated sediments outweigh the disadvantages. Wetland plants alter the redox conditions, pH and organic matter content of sediments and so affect the chemical speciation and mobility of metals. Metals may be mobilized or immobilized, depending on the actual combination of factors, and it is extremely difficult to predict which effects plants will actually have on metal mobility under a given set of conditions. However, while the effects of plants can extend several tens of centimeters into the sediments, there are no reports suggesting large-scale mobilization of metals by wetland plants.  相似文献   

9.
Microbial cycling of iron and sulfur in acidic coal mining lake sediments   总被引:1,自引:0,他引:1  
Lakes caused by coal mining processes are characterized by low pH, low nutrient status, and high concentrations of Fe(II) and sulfate due to the oxidation of pyrite in the surrounding mine tailings. Fe(III) produced during Fe(II) oxidation precipitates to the anoxic acidic sediment, where the microbial reduction of Fe(III) is the dominant electron-accepting process for the oxidation of organic matter, apparently mediated by acidophilic Acidiphilium species. Those bacteria can reduce a great variety of Fe(III)-(hydr)oxides and reduce Fe(III) and oxygen simultaneously which might be due to the small differences in the redox potentials under low pH conditions. Due to the absence of sulfide, Fe(II) formed in the upper 6 cm of the sediment diffuses to oxic zones in the water layer where itcan be reoxidized by Acidithiobacillus species. Thus, acidic conditions are stabilized by the cycling of iron which inhibits fermentative and sulfate-reducing activities. With increasing sediment depth, the amount of reactive iron decrease, the pH increases above 5, and fermentative and as yet unknown Fe(III)-reducing bacteria are also involved in the reduction of Fe(III). Sulfate is reduced apparently by the activity of spore-forming sulfate reducers including new species of Desulfosporosinus that have their pH optimum similar to in situconditions and are not capable of growth at pH 7. However, generation of alkalinity via sulfate reduction is reduced by the anaerobic reoxidation of sulfide back to sulfate. Thus, the microbial cycling of iron at the oxic-anoxic interface and the anaerobic cycling of sulfur maintains environmental conditions appropriate for acidophilic Fe(III)-reducing and acid-tolerant sulfate-reducing microbial communities.  相似文献   

10.
Impacts of non-equilibrium on results of percolation experiments on municipal solid waste incineration (MSWI) bottom ash were investigated. Three parallel column experiments were performed: two columns with undisturbed percolation and one column with two sets of 1-month-long flow interruptions applied at liquid-to-solid (L/S) ratios of L/S 2L/kg and 12L/kg, respectively. Concentrations of Na, K, Cl(-), Ca, Si, SO(4)(2-), Al, Cu, Ni, Mo, Ba, Pb, Zn, and dissolved organic carbon (DOC) were monitored throughout the entire leaching period; geochemical modeling was used to identify non-equilibrium-induced changes in the solubility control. Despite both physical and chemical non-equilibrium, the columns were found to provide adequate information for readily soluble compounds (i.e., Na, Cl(-), and K) and solubility-controlled elements (i.e., Ca, SO(4)(2-), Ba, Si, Al, Zn, and Pb). The leaching of Cu and Ni was shown to depend strongly on DOC leaching, which was likely affected by physical non-equilibrium during flow interruptions. Consequently, the leaching of Cu and Ni in the undisturbed columns was shown to be by about one order of magnitude lower compared with the interrupted column. The results indicate that the leaching of DOC-related metals in laboratory column experiments may be considerably underestimated compared with full-scale scenarios in which the impacts from non-equilibrium may be significantly lower. The leaching of Mo (or MoO(4)(2-)) may be controlled solely by its availability in the mobile zone, which in turn appeared to be controlled by diffusion from the stagnant zone; no Mo controlling minerals were predicted by the geochemical modeling.  相似文献   

11.
The effect of sediment redox conditions on the solubility behavior of Fe, Pb, Ni, Ba, and Cu in bottom sediment collected from a produce water discharge site was investigated using kinetics and chemical fractionation procedures. Sediment collected was composited and subsamples incubated in laboratory microcosms under controlled Eh-pH conditions. Sediment was sequentially extracted for determining metals in five fractions (exchangeable, carbonate, bound to iron and manganese oxide, bound to organic matter and sulfide, mineral matrix or residue). Metal distribution in the fractions indicates that under oxidizing sediment conditions, the behavior of Fe, Pb and Ni were governed by Fe(III) and Mn(IV) oxides; Ba by insoluble complexation with humic compounds; and Cu by carbonates and humic complexation. Under reducing sediment condition, the behaviors of Fe and Cu were controlled by the formation of insoluble sulfides and humic complexes; the behaviors of Ni and Ba by carbonate and Pb behavior by sulfides, carbonates and humic complexes. With increases in sediment redox potential, the affinity between Fe(III), Mn(IV) oxides and Fe, Pb, Ni, Cu increased, the affinity between insoluble large molecular humic and Ba increased, and the affinity between carbonates and Cu increased. With decreasing sediment redox potential, the affinity between carbonates and Fe, Ni, Ba increased; the affinity between sulfides, humic substances and Fe, Pb, Ni, Cu also increased. Upon Fe(III) oxide reduction, it is estimated that 20% of total reducible Fe(III) oxides was reduced by direct bacterial reduction (K = −42.6 ppm/day), 80% of total reducible Fe(III) oxides was associated with chemical fractions attributed to sulfide oxidation (K = −171.5 ppm/day). The rate constants (ppm/day) for dissolved Ni (Eh <0 mV), Pb (Eh < −80 mV) and Cu (−80 mV < Eh <0 mV) are −1.6, −0.047 and −0.16, respectively. In our incubation period, the rate constants (ppm/day) for Ni bound to Fe(III) and Mn(IV) oxides, Ba bound to carbonates and Cu bound to insoluble large molecular humic are −3.2, 0.91 and 4.3, respectively.  相似文献   

12.
The isotopic and molecular compositions of organic matter buried in lake sediments provide information that helps to reconstruct past environmental conditions and to assess impacts of humans on local ecosystems. This overview of sedimentary records from the North American Great Lakes region describes examples of applications of organic geochemistry to paleolimnological reconstructions. These lakes experienced a succession of human-induced environmental changes that started after completion of the Erie Canal in 1825. Agricultural deforestation in the mid-nineteenth century released soil nutrients that increased algal productivity and caused an associated increase in algal biomarkers in sediment records. Eutrophication that accompanied magnified delivery of municipal nutrients to the lakes in the 1960s and 1970s created excursions to less negative δ13C values in sediment organic matter. Increased organic carbon mass accumulation rates mirror the isotopic evidence of eutrophication in the Great Lakes.  相似文献   

13.
A pilot plant was set up to treat leachate from an industrial landfill containing shredder residues of end-of-life vehicles and white goods. The treatment plant consisted of aeration and sedimentation steps for pre-treatment, and a filter. The plant was designed to simultaneously remove various types of pollutants. The efficiencies of pre-treatment and of the main treatment step were investigated over a period of 3 years at the landfill site. By continuous aeration of the leachate the concentrations of Fe and Mn were reduced by 55% and 49%, respectively. By prolonged sedimentation suspended solid content was noticeably reduced (72%). In the filter, consisting of a mixture of peat and carbon-containing ash as a treatment medium, very high reduction of polar organic compounds, e.g. phenol (74%), o-and p-cresol (91%), and 2,4-dimethylphenol (73%), high average reduction of metals, e.g. Pb (78%), Fe (74%), Cu (73%), Mn (56%), Sn (55%), and Zn (47%), and good average reduction of DOC (26%), Tot-N (23%) and NH4-N (46%) were achieved. Sixty non-polar compounds in the leachate, identified by GC–MS screening, occurred at trace level. Most of them were considerably reduced in the filter.  相似文献   

14.
The elemental composition of the industrial waste incineration bottom ash (IWIBA) samples collected from three different types of incinerator with different kinds of wastes were compared. The major-to-ultratrace elements in the IWIBA samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). As a result, ca. 40 elements in the concentration range from milligrams per gram to submicrograms per gram could be determined with relative standard deviations of less than 5%. The IWIBA sample from petrochemical wastes contained lower concentrations of the elements, because fewer mineral constituents were contained in the input waste materials. On the contrary, the elemental concentrations in the IWIBA sample from industrial solid wastes provided the highest values for most elements, while the elemental compositions of the IWIBA sample from food wastes were similar to those of municipal solid waste incineration bottom ash. In addition, it was found from the analytical results that the levels of various heavy metals such as Cr, Mn, Fe, Ni, Cu, As, Zr, Mo, Sb, Ba, and Pb were higher in the IWIBA samples than in municipal solid waste incineration bottom ash. The enrichment factors of the elements in the IWIBA samples were estimated from the analytical results to compare the elemental distributions in incineration bottom ashes in relation to their mining influence factors, which are the indices for human use of the elements.  相似文献   

15.
Bottom ash is the main solid residue (in weight) which is produced by municipal solid waste incineration (MSWI) facilities. This material is composed of a mineral matrix and may be used as secondary raw material for construction purpose. However, for this specific application the leaching behavior of the environmentally relevant elements under field conditions is different from the predicted behavior based on results obtained from the standardized leaching test. Therefore, a 70-day simulative experiment has been carried out in this study to investigate the release of major heavy metals (Cu and Pb) and polycyclic aromatic hydrocarbons (PAHs) from several particle fractions of bottom ash under a static leaching condition, where bottom ash was immersed in water at different initial pH values. Results showed that: (1) the leaching behavior of Cu and Pb was much similar with that depicted by the standardized leaching tests, and fit well with the solubility-controlling mechanism; (2) the sorption mechanism on the neoformed phases may control the solubility of Pb, whereas the dissolved organic carbon (DOC) may play an important role in the solubility of Cu; and (3) the leached PAHs were degraded during the later period of leaching process.  相似文献   

16.
To elucidate the role of Fe(III) reduction in mining lake sediments amended with organic substrates, we performed a large (10 m diameter) enclosure experiment in which sediments were amended with Carbokalk, a waste product from sugar industry containing organic carbon and lime. Fe(III) reduction rates were determined monthly by measuring the accumulation of Fe(II) in the sediments in the field. Fe(III) reduction rates were also determined by incubating sediment samples with synthetic Fe(III) oxyhydroxide under in situ temperature in the laboratory. Sulfate reduction was selectively inhibited in the Fe(III) reduction experiments by addition of sodium molybdate. Sulfate reduction was measured by accumulation of reduced inorganic sulfides in the field and by 35S radiotracer using a core injection technique. Sediment incubation and determination of sulfate reduction rates with radiotracer showed that sulfate reduction and direct microbial Fe(III) reduction occured simultaneously in the upper centimeters of the sediments and that both processes contributed to alkalinity generation. However, Fe(III) reduction was the initial process and rates were at least 3.5 fold higher than sulfate reduction rates. The results indicate that the presence of suitable anions for Fe(II) precipitation as carbonate or sulfide is needed in order to prevent loss of potential alkalinity by Fe(II) diffusion and reoxidation in the water column.  相似文献   

17.
Phosphogypsum chemistry under highly anoxic conditions   总被引:2,自引:0,他引:2  
Phosphogypsum (PG), primary byproduct from phosphoric acid production, is accumulated in large stockpiles and occupies vast areas of land. Contaminants emanating from PG stacks can impact the environment including waterbodies. The major constraint for PG use in the environment is the presence of metals in high concentrations. Reduction of sulfate found in PG and significance of sulfide production in reducing aqueous concentrations of toxic metals were studied. Mississippi River alluvial sediment amended with PG was equilibrated under controlled redox (-250 mV) and pH (5.5, 6.5, and 7.5) conditions. Phosphogypsum addition resulted in a large increase in sulfide levels in sediment suspensions. As a result, the solubility of spiked heavy metals (Cd and Cr, 100 and 1000 mg kg(-1)) and natural trace elements (As, Ba, and Cd) was significantly reduced by precipitation as insoluble sulfides. Sediment pH also influenced sulfate reduction and sulfide formation in both PG-amended and control sediment. Low sediment pH (5.5) resulted in the highest release of all studied metals and sulfate into sediment solution. This study indicates that if PG or PG-products are placed in neutral to alkaline sediments/soils and/or reducing environments, metals released at toxic levels should be of little concern to the wetland environment.  相似文献   

18.
Limited natural resources and landfill space, as well as increasing amounts of ash produced from incineration of bio fuel and municipal solid waste, have created a demand for useful applications of ash, of which road construction is one application. Along national road 90, situated about 20 km west of Sollefteå in the middle of Sweden, an experiment road was constructed with a 40 cm bio fuel ash layer. The environmental impact of the ash layer was evaluated from soil solutions obtained by centrifugation of soil samples taken on four occasions during 2001–2003. Soil samples were taken in the ash layer, below the ash layer at two depths in the road and in the ditch. In the soil solutions, pH, conductivity, dissolved organic carbon (DOC) and the total concentration of cations (metals) and anions were determined. Two years after the application of the ash layers in the test road, the concentrations in the ash layer of K, SO4, Zn, and Hg had increased significantly while the concentration of Se, Mo and Cd had decreased significantly. Below the ash layer in the road an initial increase of pH was observed and the concentrations of K, SO4, Se, Mo and Cd increased significantly, while the concentrations of Cu and Hg decreased significantly in the road and also in the ditch. Cd was the element showing a potential risk of contamination of the groundwater. The concentrations of Ca in the ash layer indicated an ongoing hardening, which is important for the leaching rate and the strength of the road construction.  相似文献   

19.
Since nearly one hundred years Traunsee experiences the import of tons of liquid and solid waste originating from salt and soda production. Today, the lake exhibits chloride concentrations of up to 170 mg L-1 and 19% of the lake floor are directly or indirectly influenced by industrial deposits (ID). Based on the comparison of several microbial parameters in unaffected, directly affected and intermediate lake bottom sediments, the ecological integrity of the lake was evaluated. The highly alkaline ID, which were exclusively colonized by microorganisms, harbored a bacterial community reduced by a factor of 10 in abundance and biomass compared to undisturbed sediment areas within the lake. The bacterial community of ID was furthermore characterized by a reduced content of actively respiring cells (INT-formazan reduction), a lower frequency of dividing cells (FDC) and a significantly reduced cell and biomass production. A 80 to 90% reduction in carbon recycling is estimated for the area exclusively covered by ID. Protists, although occasionally absent from the industrial sediments, were in general found to be less sensitive to the contaminant stress. Differences in alkalinity and dissolved organic carbon (DOC) concentrations of sediment porewaters as well as the total organic content and C/N ratios of sediments partly explain the microbial pattern observed at the various sampling sites. Possible consequences of the continuous industrial tailings for the whole lake ecosystem and the validation of the ecological integrity are discussed.  相似文献   

20.
Aquifer sediment and groundwater chemistry data from 15 Department of Defense facilities located throughout the United States were collected and analyzed with the goal of estimating the amount of natural organic carbon needed to initiate reductive dechlorination in groundwater systems. Aquifer sediments were analyzed for hydroxylamine and NaOH‐extractable organic carbon, yielding a probable underestimate of potentially bioavailable organic carbon (PBOC). Aquifer sediments were also analyzed for total organic carbon (TOC) using an elemental combustion analyzer, yielding a probable overestimate of bioavailable carbon. Concentrations of PBOC correlated linearly with TOC with a slope near one. However, concentrations of PBOC were consistently five to ten times lower than TOC. When mean concentrations of dissolved oxygen observed at each site were plotted versus PBOC, it showed that anoxic conditions were initiated at approximately 200 mg/kg of PBOC. Similarly, the accumulation of reductive dechlorination daughter products relative to parent compounds increased at a PBOC concentration of approximately 200 mg/kg. Concentrations of total hydrolysable amino acids (THAA) in sediments also increased at approximately 200 mg/kg, and bioassays showed that sediment CO2 production correlated positively with THAA. The results of this study provide an estimate for threshold amounts of bioavailable carbon present in aquifer sediments (approximately 200 mg/kg of PBOC; approximately 1,000 to 2,000 mg/kg of TOC) needed to support reductive dechlorination in groundwater systems. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号