首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For over 10 years scientists have studied the effects of in situ burning of oil on air and water quality and potential related health issues. The recent Newfoundland Offshore Burn experiment, conducted by Environment Canada, was the culmination of several years of work. The results of this experiment found that ‘emissions from the in situ oil fire were lower than expected and all compounds and parameters measured were below health concerns at 150 m from the fire’ (The Newfoundland Offshore Burn Experiment—NOBE, Preliminary Results of Emissions Measurement). Polyaromatic Hydrocarbons (PAHs) were found to be lower in the soot generated from the fire than in the starting oil prior to the fire. The conclusion reached was that the environmental benefits resulting from the burning of oil spills far outweigh the potential air pollution caused from the smoke. These findings now open the door on the use of in situ burning of oil as a major tool to be used to mitigate environmental damage from oil spills.As a result of these and other test findings, Region 6 of the Regional Response Team (made up of the U.S. Coast Guard, The Minerals Management Service, The Department of Environmental Quality, The U.S. Environmental Protection Agency, and other state and federal agencies) had pre-approved the use of in situ burning of oil spills for offshore Louisiana and Texas. Other parts of the country and other countries are evaluating the use of in situ burning to combat oil spills. Now that the scientific community has weighed the environmental costs and benefits of in situ burning it is time to address the operational and procedural issues.  相似文献   

2.
Emissions from open burning of military food waste and ration packaging compositions were characterized in response to health concerns from open burning disposal of waste, such as at military forward operating bases. Emissions from current and prototype Meals, Ready-to-Eat (MREs), and material options for their associated fiberboard packaging were quantified to assess contributions of the individual components. MREs account for 67–100% of the particulate matter (PM), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins and -furans (PCDDs/PCDFs) emissions when burned in unison with the current fiberboard container and liner. The majority of the particles emitted from these burns are of median diameter 2.5 µm (PM2.5). Metal emission factors were similar regardless of waste composition. Measurements of VOCs and PAHs indicate that targeted replacement of MRE components may be more effective in reducing emissions than variation of fiberboard-packaging types. Despite MRE composition variation, equivalent emission factors for PM, PAH, VOC, and PCDD/PCDF were seen. Similarly, for fiberboard packaging, composition variations exhibited essentially equivalent PM, PAH, VOC, and PCDD/PCDF emission factors amongst themselves. This study demonstrated a composition-specific analysis of waste burn emissions, assessing the impact of waste component substitution using military rations.  相似文献   

3.
This research note summarizes Spartina alterniflora and Sagittaria lancifolia sensitivity to oiling and in situ burning of applied oil. Experimental plots (2.4 m × 2.4 m × 0.6 m) were constructed in salt and freshwater marsh habitats and South Louisiana Crude (SLC) applied (2 l m−2) to stems and leaves of marsh plants of oil and oil/burn treatment plots. Burning was initiated mid-August when winds were calm and a 15-25 cm floodwater layer covered the marsh substrate. Vegetative responses (stem density, height, carbon assimilation and biomass production) were measured for approximately one year following the in situ burns. Application of oil and burning of SLC only had short-term detrimental effects on salt and freshwater marsh vegetation. About one year after burns, vegetative responses measured in oiled and oiled/burned plots approached or exceeded control (no oil or burn) values. Field results suggest, under our experimental conditions, in situ burning of spilled oil in S. alterniflora and S. lancifolia marshes may be a remediation operation to consider.  相似文献   

4.
This paper is a summary of the fundamentals that influence the window-of-opportunity for in situ burning of oil at sea. It is a discussion of the variables and factors that influence the capabilities and limitations of in situ burning of oil. This includes the requirements for ignition and sustained burning and the factors that influence the quantity of residue and burn efficiency and the use of emulsion breakers.  相似文献   

5.
Fugitive pollutant emissions from municipal solid waste landfills have the potential to cause annoyance and health impacts in the surrounding residential areas. The overall objective of this research was to perform an assessment of fugitive pollutant emissions and a dispersion analysis downwind of a specific landfill site. The study was performed at the closed Ano Liosia landfill site which is located in the greater Athens area. The human exposure from priority to health-risk pollutants emitted from landfill, such as vinyl chloride and benzene, was estimated by the landfill gas emission LandGEM 2.01 software combined with the atmospheric long-term dispersion model ISC3-LT. The emission and meteorological conditions under which the models were applied referred to the worst-case scenario. This scenario was used for the evaluation of the maximum human exposure assessed beyond the Ano Liosia landfill towards the residential areas. The above scenario provides the minimum downwind distance of the health-risk zone which is calculated to be equal to 1.5 km from the landfill. Within this distance the assessed air pollutant concentration for several air pollutants was significantly above the World Health Organization reference lifetime exposure health criteria. Finally, the applied methodology was used in the Ano Liosia landfill, where atmospheric concentrations of pollutants measured in the field were compared with model predictions.  相似文献   

6.
In situ burning is being utilized in the United States to remove oil from inland oil spills, usually when physical recovery is not feasible. Studies have found that habitats may recover from the effects of burning in less than a year under optimal conditions but recovery may take much longer. Policies authorizing the use of in situ burning across the US are very inconsistent. Some states use it routinely, but others do not allow it. Inland in situ burning can be a useful response tool and the federal government needs to issue more guidance to the states. Responders also need to collect more data on the environmental impacts of burning.  相似文献   

7.
In situ burning of inland and upland habitats is an alternative oil spill cleanup technique that, when used appropriately, may be more environmentally acceptable than intrusive manual, mechanical, and chemical treatments. There have been few published reports documenting the environmental effects of in situ burning in inland and upland habitats. Thus, this study, sponsored by the American Petroleum Institute, used two approaches to increase the knowledge base and improve the appropriate use of in situ burning: (1) detailed review of published and unpublished in situ burn case histories for inland and upland spills; and (2) summaries of fire effects and other information from the literature on fire ecology and prescribed burning. Thirty-one case histories were summarized to identify the state of the practice concerning the reasons for burning, favorable conditions for burning, and evaluations of burn effects. The fire ecology and effects summaries included information from the extensive knowledge base surrounding wildfire and prescribed burning (without oil) as a natural resource management tool, as well as fire tolerance and burning considerations for dominant vegetation types of the United States. Results from these two approaches should improve the application of in situ burning for inland and upland spills.  相似文献   

8.
Ammonia emissions from two contrasting seabird colonies in Scotland were measured, based on the determination of atmospheric concentrations downwind of the colonies. Atmospheric concentrations of ammonia (NH3) across the downwind plume were compared with the inverse application of a Gaussian dispersion model (ID) to calculate the modelled NH3 emission that would generate the measured cross-wind-integrated plume concentration. In parallel, a tracer gas (sulphur hexafluoride, SF6) was released from the colonies with air samples taken to allow determination of SF6 concentrations. On the basis of the known emission rate of SF6, the magnitude of ammonia emissions was estimated by the cross-wind-integrated tracer ratio (TR) of NH3/SF6 concentrations. Coupled with data on annual bird attendance, the measurements indicate annual emissions from the Isle of May and the Bass Rock of 18 and 132 tonnes NH3-N year?1, respectively. The measured NH3 emissions were compared with estimates of seabird nitrogen excretion to estimate the proportion of excreted N that is volatilised as NH3 (F Nr). The emission estimates of the two methods compared favourably, giving 4 and 6 kg NH3-N h?1 (F Nr = 15%) for the Isle of May for the ID and TR methods, respectively, and 21 and 25 kg NH3-N h?1 (F Nr = 50%) for the Bass Rock for the ID and TR methods, respectively. The results provide the first measurement-based estimates to allow regional up scaling of ammonia emissions from seabirds.  相似文献   

9.
An attempted has been made to recover high-calorific fuel gas and useful carbonaceous residue by the electric arc pyrolysis of waste lubricating oil. The characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil were investigated in this study. The produced gas was mainly composed of hydrogen (35–40%), acetylene (13–20%), ethylene (3–4%) and other hydrocarbons, whereas the concentration of CO was very low. Calorific values of gas ranged from 11,000 to 13,000 kcal kg?1 and the concentrations of toxic gases, such as NOx, HCl and HF, were below the regulatory emissions limit. Gas chromatography–mass spectrometry (GC/MS) analysis of liquid-phase residues showed that high molecular-weight hydrocarbons in waste lubricating oil were pyrolyzed into low molecular-weight hydrocarbons and hydrogen. Dehydrogenation was found to be the main pyrolysis mechanism due to the high reaction temperature induced by electric arc. The average particle size of soot as carbonaceous residue was about 10 μm. The carbon content and heavy metals in soot were above 60% and below 0.01 ppm, respectively. The utilization of soot as industrial material resources such as carbon black seems to be feasible after refining and grinding.  相似文献   

10.
Oil refining is among the industrial activities that emit considerable amounts of air pollutants into the atmosphere. Nitrogen oxides are important air pollutants that are emitted by oil refineries as products of combustion processes. The ambient air concentrations of nitrogen oxide (NO) and nitrogen dioxide (NO2) were monitored continuously at a site close to an oil refinery, near the city of Corinth in Greece, during autumn 1997 together with the main meteorological parameters. The contribution of the oil refinery to the measured atmospheric levels of nitrogen oxides was estimated. The ambient air concentration of nitrogen oxides in the area surrounding the oil refinery were generally lower than the ambient air concentrations in the urban area of Athens in Greece, and the NO2 levels were always below the existing air quality standards. The influence of the refinery emitted NOx in the photochemical production of ozone seems to be more important in terms of human and vegetation exposure given the high ozone backgrounds measured in the area.  相似文献   

11.
An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation (D.Lgs. 152/2006 and D.Lgs. 4/2008).  相似文献   

12.
In situ burning is an oil spill response technique or tool that involves the controlled ignition and burning of the oil at or near the spill site on the surface of the water or in a marsh (see Lindau et al., this volume). Although controversial, burning has been shown on several recent occasions to be an appropriate oil spill countermeasure. When used early in a spill before the oil weathers and releases its volatile components, burning can remove oil from the waters surface very efficiently and at very high rates. Removal efficiencies for thick slicks can easily exceed 95% (Advanced In Situ Burn Course, Spiltec, Woodinville, WA, 1997). In situ burning offers a logistically simple, rapid, inexpensive and if controlled a relatively safe means for reducing the environmental impacts of an oil spill. Because burning rapidly changes large quantities of oil into its primary combustion products (water and carbon dioxide), the need for collection, storage, transport and disposal of recovered material is greatly reduced. The use of towed fire containment boom to capture, thicken and isolate a portion of a spill, followed by ignition, is far less complex than the operations involved in mechanical recovery, transfer, storage, treatment and disposal (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994).However, there is a limited window-of-opportunity (or time period of effectiveness) to conduct successful burn operations. The type of oil spilled, prevailing meteorological and oceanographic (environmental) conditions and the time it takes for the oil to emulsify define the window (see Buist, this volume and Nordvik et al., this volume). Once spilled, oil begins to form a stable emulsion: when the water content exceeds 25% most slicks are unignitable. In situ burning is being viewed with renewed interest as a response tool in high latitude waters where other techniques may not be possible or advisable due to the physical environment (extreme low temperatures, ice-infested waters), or the remoteness of the impacted area. Additionally, the magnitude of the spill may quickly overwhelm the deployed equipment necessitating the consideration of other techniques in the overall response strategy (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994; Proceedings of the In Situ Burning of Oil Spills Workshop. NIST. SP934. MMS. 1998, p. 31; Basics of Oil Spill Cleanup, Lewis Publishers, Washington, DC, 2001, p. 233). This paper brings together the current knowledge on in situ burning and is an effort to gain regulatory acceptance for this promising oil spill response tool.  相似文献   

13.
This paper discusses processes and factors for estimating time period windows of in situ burning of spilled oil at sea. Time-periods of in situ burning of Alaska North Slope (ANS) crude oil are estimated using available data. Three crucial steps are identified. The First Step is to determine the time it takes for the evaporative loss to reach the known or established limitation for evaporation and compare this time-period with estimated time of ignition at the ambient wind and sea temperatures. The Second Step is to determine the water up-take of the spilled oil and compare it with the known or established limitation for water-in-oil content. The Third Step is to determine the necessary heat load from the igniter to bring the surface temperature of the spilled oil to its flash point temperature so that it will burn at the estimated time period for ignition of the slick.  相似文献   

14.
A combination of numerical modeling and large-scale experimentation has yielded a tremendous amount of information about the structure, trajectory and composition of smoke plumes from large crude oil fires. A numerical model, a large outdoor fire plume trajectory (ALOFT), has been developed at NIST to predict the downwind concentration of smoke and other combustion products. The model is based on the fundamental conservation equations that govern the introduction of hot gases and particulate matter from a large fire into the atmosphere. The model has been used to estimate distances from fires under of variety of meteorological and topographic conditions where ground level concentrations of smoke and combustion products fall below regulatory threshold levels.  相似文献   

15.
SINTEF Applied Chemistry has been working in the field of in situ burning since 1988, beginning with the first open water testing of the 3M fire proof boom which took place on Spitsbergen. In recent years, the focus of SINTEF's research activities in this area has been on the burning of emulsions. An experimental programme was initiated by NOFO in 1990 to study the in situ burning of water-in-oil (w/o) emulsions, as part of a wider NOFO programme ‘Oil spill contingency in Northern and Arctic waters’ (ONA). The research conducted under this programme has addressed many areas of in situ burning including:
  • •• study of processes governing burning emulsions
  • •• development of ignition techniques for emulsions
  • •• effect of environmental conditions on burning
  • •• burning crude oil and emulsions in broken ice
  • •• uncontained burning of crude oil and emulsions.
  相似文献   

16.
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are emitted in trace amounts from municipal solid waste (MSW) incinerators. The exposure to PCDD/Fs experienced by an individual is dominated by the food chain pathway, which accounts for over 98% of the total uptake. Defining a target daily intake (the World Health Organization TDI of 10 pg I-TEQ kg.bw−1day−1) exposure assessment algorithms were then applied to arrive at the corresponding PCDD/F levels in air, soil, plants, food products, etc., which would allow the target intake to be met while retaining the balance of intake between the various exposure pathways. These concentrations were converted to an ambient air concentration of PCDD/Fs and ultimately, by defining criteria for acceptability, to a guide value for PCDD/F concentration in emissions from the MSW incinerator. This strategy was applied to PCDD/F emissions from MSW incinerators of various sizes against two illustrative criteria for acceptability: an “insignificant” release and a threshold above which the release may require further assessment for environmental effects and for control. Using the criteria developed in this paper, the current PCDD/F emission limit of 0.1 ng I-TEQ m−3results in an emission that is classed as “insignificant” for all plant sizes. However, higher emission concentrations can also be accommodated below the threshold for further assessment and control.  相似文献   

17.
The burning rate of a slick of oil on a water bed is characterized by three distinct processes, ignition, flame spread and burning rate. Although all three processes are important, ignition and burning rate are critical. The former, because it defines the potential to burn and the latter because of the inherent possibility of boilover. Burning rate is calculated by a simple expression derived from a one-dimensional heat conduction equation. Heat feedback from the flame to the surface is assumed to be a constant fraction of the total energy released by the combustion reaction. The constant fraction (χ) is named the burning efficiency and represents an important tool in assessing the potential of in situ burning as a counter-measure to an oil spill. By matching the characteristic thermal penetration length scale for the fuel/water system and an equivalent single layer system, a combined thermal diffusivity can be calculated and used to obtain an analytical solution for the burning rate. Theoretical expressions were correlated with crude oil and heating oil, for a number of pool diameters and initial fuel layer thickness. Experiments were also conducted with emulsified and weathered crude oil. The simple analytical expression describes well the effects of pool diameter and initial fuel layer thickness permitting a better observation of the effects of weathering, emulsification and net heat feedback to the fuel surface. Experiments showed that only a small fraction of the heat released by the flame is retained by the fuel layer and water bed (of the order of 1%). Ignition has been studied to provide a tool that will serve to assess a fuels ease to ignite under conditions that are representative of oil spills. Two different techniques are used, piloted ignition when the fuel is exposed to a radiant heat flux and flash point as measured by the ASTM D56 Tag Closed Cup Test. Two different crude oils were used for these experiments, ANS and Cook Inlet. Crude oils were tested in their natural state and at different levels of weathering, showing that piloted ignition and flash point are strong functions of weathering level.  相似文献   

18.
During the period of 22 August–12 October 1998, seven commercial fire booms were involved in burn testing at the US Coast Guard Fire and Safety Test Detachment Facility in Mobile, Alabama in accordance with the proposed protocol, American Society for Testing and Materials-F20. Four of the seven booms survived the test sequence and were shipped from Mobile, Alabama to the Minerals Management Service’s OHMSETT facility for additional tests including first loss, gross loss, tow speed, oil loss rate, and critical tow speed. The four booms showed the same trend in response to various wave conditions; the long sinusoidal waves improved containment performance and the short choppy waves degraded performance. One of the four booms achieved slightly higher first and gross oil loss rate tests. One boom demonstrated superior stability at high tow speeds. The results of this test report are consistent with the evaluation of fire booms that had been previously tested at OHMSETT, but also show a slight increase in performance. The tests indicate that the existing fire booms can contain oil in currents up to 1 knot and in various wave conditions after being exposed to multiple burns. This information will be used by the Coast Guard to develop policies and procedures for the in situ burning (ISB) of oil during a spill.  相似文献   

19.
An experimental technique has been developed to study systematically the ignition, flame spread and mass burning characteristics of liquid fuels spilled on a water bed. The final objective of this work is to provide a tool that will serve to assess a fuel's ease of ignition, spread and sustaining a flame, thus, helping to better define the combustion parameters that affect in situ burning of oil spills.  相似文献   

20.
Ammonia emissions from two contrasting seabird colonies in Scotland were measured, based on the determination of atmospheric concentrations downwind of the colonies. Atmospheric concentrations of ammonia (NH3) across the downwind plume were compared with the inverse application of a Gaussian dispersion model (ID) to calculate the modelled NH3 emission that would generate the measured cross-wind-integrated plume concentration. In parallel, a tracer gas (sulphur hexafluoride, SF6) was released from the colonies with air samples taken to allow determination of SF6 concentrations. On the basis of the known emission rate of SF6, the magnitude of ammonia emissions was estimated by the cross-wind-integrated tracer ratio (TR) of NH3/SF6 concentrations. Coupled with data on annual bird attendance, the measurements indicate annual emissions from the Isle of May and the Bass Rock of 18 and 132 tonnes NH3-N year–1, respectively. The measured NH3 emissions were compared with estimates of seabird nitrogen excretion to estimate the proportion of excreted N that is volatilised as NH3 (FNr). The emission estimates of the two methods compared favourably, giving 4 and 6 kg NH3-N h–1 (FNr = 15%) for the Isle of May for the ID and TR methods, respectively, and 21 and 25 kg NH3-N h–1 (FNr = 50%) for the Bass Rock for the ID and TR methods, respectively. The results provide the first measurement-based estimates to allow regional up scaling of ammonia emissions from seabirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号