首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To achieve high precision and high productivity in machining sculptured surfaces, a new architecture for a five-axis CNC interpolator for machining ruled surfaces was developed and demonstrated on a milling machine. The objective of the five-axis interpolator is to continuously maintain the milling cutter axis in parallel with the straight lines of the ruled surface. The cutter position and orientation are calculated at each sampling period of the interpolator, and corresponding axial position commands are generated by an inverse kinematics algorithm. This real-time approach produces precise surfaces and requires substantially less machining time compared to the conventional off-line approach. Two new g-codes are also given in this paper for the new interpolator to produce part surfaces in CNC milling machines.  相似文献   

2.
The crystallographic orientation or anisotropy is one of the main microstructural attributes strongly affecting the mechanical properties of materials. It is also an influential parameter to be considered during the manufacturing process especially for ultra-precision machining since it affects part quality, tool performance, and process productivity through material properties. In this study, a prediction toolset constituted of a Viscoplastic Self-Consistent model and machining process mechanics model is used to predict the texture evolution on the machined surface. The VPSC (Viscoplastic Self-Consistent) methodology which uses the mechanisms of slip and twinning that are active in single crystals of arbitrary symmetry was used. For this, an analytical model for the process mechanics is derived to understand the forces and stresses generated by the cutting tool at each workpiece point, then the strain and strain rate to capture the rate at which the material is deforming and finally the crystallographic orientations under various machining conditions. Experiments were performed on the orthogonal cutting of aluminum alloy AA-7075-T651 and the texture results were compared to model predictions.  相似文献   

3.
Thermoforming is a popular manufacturing process for creating useful shapes out of heated thermoplastic sheets using a porous tool under differential pressure. For large, heavy-gauge parts, thermoforming tools are typically made by CNC machining a billet of material or sand casting from an inexpensive master pattern. Although these tooling methods are well established, it is difficult to incorporate enhanced tool functionality such as conformal cooling channels, embedded sensors, unimpeded vacuum channel placement, and customized thermal mass. Profiled Edge Laminas (PEL), a rapid tooling method based on profiling, assembling, and clamping an array of thick layers, is ideally suited for tools used for thermoforming large, heavy-gauge parts and requiring enhanced features. This paper describes how the PEL tooling method can be applied to the design and fabrication of a thermoforming tool and demonstrates the entire process through a case study. Tooling design guidelines and analytical models for predicting conformal channel and vacuum line performance are included. The ease with which multiple-zone conformal cooling/heating channels, vacuum lines, and temperature sensors are incorporated into the tool is also highlighted. Specifically, a 46-layer aluminum PEL tool clamped together with bolts is successfully designed, fabricated, and demonstrated for thermoforming a 0.3×0.4×0.4 m part made from a PVC/Acrylic blend based on the outlined method. The tool incorporates three independent cooling zones sealed by a polymer sealant, three embedded temperature sensors, and an elaborate matrix of vacuum channels. All tool features and the basic geometry were machined into each individual lamina in the same set-up by 2D abrasive waterjet machining, and the final tool surface was CNC-machined. The PEL tooling method is successfully applied to the manufacture of a large, heavy-gauge thermoformed part intended for production.  相似文献   

4.
某超临界汽轮机主汽阀杆断裂原因分析   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 某热电厂超临界机组汽轮机发生主蒸汽阀阀杆(标称材质为22Cr12NiMoWV(C422)钢)断裂事故,对发电安全造成不良影响.为此,分析该阀杆断裂失效的原因,提出改进措施,以避免类似事故的发生.方法 从外观检查、成分测定、金相检验以及断口观察等方面入手,结合硬度和冲击性能测试,探讨阀杆断裂的主要原因.结果 该断裂阀杆材质符合22Cr12NiMoWV钢的成分标准,但其内部存在网状分布的组织偏析,导致其力学性能达不到标准要求.此外,该断裂阀杆还存在零件设计、加工及热处理工艺不合理等问题.结论 该阀杆变径处采用直角过渡,十字贯穿孔加工刀痕明显,易造成应力集中,诱发裂纹,裂纹选择性地沿力学性能薄弱的组织偏析区失稳扩展,最终导致阀杆断裂失效.据此,从质量控制、工艺规范化等方面提出改进建议.  相似文献   

5.
Five-axis cylindrical machining is the only way to machine some complicated sculptured surfaces, such as the wheel surfaces of turbo compressors. Current computer-aided manufacturing (CAM) algorithms for five-axis cylindrical machining only consider the surfaces’ geometric information when generating cutter contact points (CC points). Hence, the step length, which is the distance between two CC points, is determined only by the surface parameters for these CAM algorithms. Because of tool-axis rotation, the actual cut trajectory within each step is no longer a straight line passing through two consecutive CC points for five-axis machining. Thus the cut error and the maximum allowable step length should depend on the structural parameters of NC machines as well as the surface's geometry. This paper develops a new algorithm to estimate the maximum allowable step length based on the cut error of five-axis cylindrical machining, and shows that this algorithm provides better estimation than traditional algorithms.  相似文献   

6.
Since the first CNC-type hexapod machine tool prototypes were presented at the 1994 International Machine Tool Show (IMTS) in Chicago, much debate has ensued on whether or not these machine tools will ever reach the place where they challenge traditional machining centers. This paper presents a review of research topics in the field of parallel kinematic machining for manufacturing, as well as a parallel view of the state of the art of traditional multiaxis machining. After discussing similarities as well as differences in issues faced by parallel kinematic machines and traditional machining centers, a survey of existing prototypes is provided.  相似文献   

7.
In this paper a non-layer-based additive manufacturing (AM) process named computer numerically controlled (CNC) accumulation process is presented for applications such as plastic part repairing and modification. To facilitate the CNC accumulation process, a novel three-dimensional (3D) laser scanning system based on a micro-electro-mechanical system (MEMS) device is developed for in situ scanning of inserted components. The integration of the scanning system in the CNC accumulation process enables the building-around-inserts with little human efforts. A point processing method based on the algebraic point set surface (APSS) fitting and layered depth-normal image (LDNI) representation is developed for converting the scanning points into triangular meshes. The newly developed 3D scanning system is compact and has sufficient accuracy for the CNC accumulation process. Based on the constructed surface model, data processing operations including multi-axis tool path planning and motion control are also investigated. Multiple test cases are performed to illustrate the capability of the integrated CNC accumulation process on addressing the requirements of building-around-inserts.  相似文献   

8.
Increasing competition has been forcing the modern manufacturing organisations to adopt advanced manufacturing paradigms. Agile Manufacturing (AM) is an advanced manufacturing paradigm that enables an organisation to survive in the competitive business environment. Agility is the performance measure of AM practices. Simultaneously, modern business organisations are forced to evolve environmental friendly products. Sustainability is regarded as an important concept for survival by the modern organisations. In this context, agility and sustainability are regarded as performance measures for contemporary organisations. This paper reports a case study which has been carried out in an Indian rotary switches manufacturing organisation. The candidate product is the knob of rotary switch. Initially Computer Aided Design (CAD) has been used to digitalise the baseline model. Keeping the baseline model as reference, five new knob models have been evolved. Then the sustainability analysis has been carried out to determine the environmental impact of the knob models. The analysis results indicated that the proposed knob models possess minimal environmental impact. The conduct of case study has lead to an inference that there is a significant improvement of agility and sustainability in the design and development of knob of rotary switch.  相似文献   

9.
The material removal within different machining process can be performed in distinct modalities. One of the modality is based on the erosion phenomena. In this paper, theoretical model of abrasive jet machining based on erosion phenomenon is discussed. The material is removed from the surface due to erosion. In abrasive jet machining process, the output parameter is achieved by controlling various input parameters. This paper discusses the effects of various input parameters in abrasive jet machining (AJM) on the material removal rate (as the output parameter). The results presented in the paper are obtained from a theoretical study carried out with the help of mathematical model and computational technique. Theoretical investigation indicates that magnetic field, electric field and inhomogeneity in DC electric field have significant effect on metal removal by abrasive jet machining process.  相似文献   

10.
CAD/CAM-based layered manufacturing and additive manufacturing techniques of metals have found applications in near-net-shape fabrication of complex shaped parts with tailored mechanical properties for several applications. Especially with the onset of newer processes such as electron beam melting (EBM) and direct metal laser sintering (DMLS), revolutionary advances may be achieved in material substitution in the medical implant industry. These processes must be suitably developed and tested for the production of medical grade substitutions. In this article, we discuss a design process for creating periodic cellular structures specifically targeted for biomedical applications. Electron beam melting is used to fabricate the parts. Evaluation of the mechanical properties is performed and compared with design parameters. Compression tests of the samples show effective stiffness values ranging from 0.57 (±0.05) to 2.92 (±0.17) GPa and compressive strength values of 7.28 (±0.93) to 163.02 (±11.98) MPa. Substituting these values for simulation of biomechanical performance of patient-specific implants illustrates the compatibility and matched functional performance characteristics of highly porous parts at a safety factor of 5 and an effective reduction in weight. These developments are unique for the construction of maxillofacial and craniofacial implants. The novel design strategy also lends itself very well to metal additive manufacturing technologies. Implants designed and fabricated with this design strategy and manufacturing process would have mechanical properties equivalent to the part they replace and restore better function and esthetics as against the currently used methods of reconstruction. Suitable examples of a titanium porous cranioplasty plate and a sandwich structure are illustrated.  相似文献   

11.
CLAD® process (Direct additive laser manufacturing, Construction Laser Additive Directe in French) allows the direct manufacturing of small parts, and especially in case of complex shapes, giving equivalent properties with traditional processes such as conventional machining or casting techniques. Present environmental considerations are very important for updates in legislation or in order to make economic allowances. A specified mechanical Ti6Al4V part is used as a support and SimaPro software allows to perform Life Cycle Assessment. This study suggests that the absence of chips production, which represents up to 80% of the titanium consumption, provides to CLAD® process an unquestionable advantage. This process requires longer times of execution, which increase additional energy consumptions, and the comparison of this process with conventional machining demonstrates that damages to resources and to human health are highly reduced. In both cases a large part of the environmental impacts are due to the powder elaboration. Finally, CLAD® process can add shapes on machined/casted parts and it is possible to consider the manufacture of a mechanical part via a hybrid process.  相似文献   

12.
This two part paper presents general issues, methods and a case study for achieving production sustainability on a machining technology level. In order to tackle these issues, the paper promotes sustainable production via the alternative machining technologies, namely cryogenic and high pressure jet assisted machining that have a high potential to cut costs and improve competitiveness by reducing resource consumption and thus creating less waste. The general issues of sustainable technologies pointed out with a comparative case study life cycle assessment performed for alternative machining processes are covered in part I of the work, concluding that future of sustainable production is going to entail the use of alternative machining technologies to reduce consumption rates, environmental burdens, and health risks simultaneously, while increasing performances and profitability. As an upgrade to this part, overall cost evaluation is covered by a case study in part II of this work.  相似文献   

13.
Sensors capable of providing fast and reliable feedback signals for monitoring and control of existing and emerging machining processes are an important research topic, that has quickly gained academic and industrial interest in recent years. Generally, high-precision machining processes are very sensitive to variation in local machining conditions at the tool–workpiece interface and lack a thorough understanding of fundamental thermomechanical phenomena. Existing sensors to monitor the machining conditions are not suitable for robust in-process control as they are either destructively embedded and/or do not possess the necessary spatial and temporal resolution to monitor local tool internal temperatures during machining at the cutting tip/edge effectively. This paper presents a novel approach for assessing transient tool internal temperature fields in the close vicinity of less than 300 μm of the tool cutting edge. A revised array layout of 10 micro thin film micro thermocouples, fabricated using adapted semiconductor microfabrication methods, has been embedded into polycrystalline cubic boron nitride (PCBN) cutting inserts by means of a modified diffusion bonding technique. Scanning electron microscopy was used to examine material interactions at the bonding interface and to determine optimal bonding parameters. Sensor performance was statically and dynamically characterized. They show good linearity, sensitivity and very fast response time. Initial machining tests on aluminum alloys are described herein. The tests have been performed to demonstrate the functionality and reliability of tool embedded thin film sensors, and are part of a feasibility study with the ultimate goal of applying the instrumented insert in hard machining operations. The microsensor array was used for the acquisition of tool internal temperature profiles very close to the cutting tip. The influence of varying cutting parameters on transient tool internal temperature profiles was measured and discussed. With further study, the described instrumented cutting inserts could provide more valuable insight into the process physics and could improve various aspects of machining processes, e.g. reliability, tool life, and workpiece quality.  相似文献   

14.
罗秀丽  杨忍  徐茜 《自然资源学报》2021,36(6):1381-1397
基于重心模型和空间错位指数方法,系统分析了1990—2017年全球人口与粮食的时空格局、空间错位特征及影响因素等。结果表明:(1)近30年来,全球人口与粮食均呈增长态势,两者的时序变化特征存在明显差异,全球人均粮食产量的区域差异特征显著,多数国家的“人粮关系”矛盾突出。(2)在全球尺度,人口与粮食重心存在显著的空间错位特征,两者在空间分布上呈现反向错位发展的态势。(3)在国家尺度,人口与粮食的空间错位格局呈现由南至北依次为“正错位区—负错位区—正错位区”。负向高错位区稳定在印度、日本等国家,正向高错位区稳定在美国、加拿大等国家。(4)全球各大洲人口与粮食的空间错位格局基本稳定,空间错位指数发生转向的国家分布在亚洲、欧洲、南美洲和非洲。(5)自然环境、国际环境、农业发展、社会环境等多种因素综合作用致使人口规模和粮食产量在空间分布上存在区域差异,促成全球人口与粮食的空间错位格局。政策启示:中国有必要加快农业供给侧结构性改革,增强农业竞争力和粮食自给率,合理统筹配置两种资源和处理两个市场之间的关系,建立规避世界粮食贸易波动和不确定性风险的应对策略,构建中国农业生态安全和粮食安全的保障体系。  相似文献   

15.
To realize an intelligent machine tool, which can autonomously determine the cutting states and can change them automatically as required due to changes in the environmental conditions, a method has been developed to monitor and identify the states of cutting for CNC turning based on a pattern recognition technique. The method proposed introduces three parameters to classify the cutting states of continuous chip formation, broken chip formation, and chatter. Among the states of cutting, the broken chip formation is required for the stable and reliable machining process. The three parameters are calculated and obtained by taking the ratio of the average variances of the dynamic components of three cutting forces. The algorithm was developed to calculate the values of three parameters during the process to obtain the reference feature spaces and determine the proper threshold values for classification of the cutting states. A tool dynamometer is developed, and implemented to the CNC turning machine to monitor the turning process.It is proved by a series of cutting experiments that the states of cutting are well identified by the method developed and proposed regardless of the cutting conditions. The algorithm is proposed to obtain the broken chips by changing the cutting conditions during the process.  相似文献   

16.
电机硅钢片冲孔模具在制造及使用中常因各种原因使某个槽孔损坏而需要修补.此文介绍了该类模具的修补技术.实践证明:该技术可延长硅钢片冲孔模具的使用寿命.  相似文献   

17.
Titanium aluminide intermetallics offer an attractive combination of low density and good oxidation, corrosion and ignition resistance with unique mechanical properties. In this study two series of machining tests are designed. Firstly the powder mixed electrical discharge machining (PMEDM) of γ-TiAl by means of different powders such as aluminum, chrome, silicon carbide, graphite and iron is performed to investigate the output characteristics of surface roughness and topography, material removal rate (MRR), electrochemical corrosion resistance of machined samples and also the machined surfaces are investigated by means of EDS and XRD analyses. Secondly after selection the aluminum powder as the most appropriate kind of powder, the current, pulse on time, powder size and powder concentration are changed in different levels for overall comparison between EDM and PMEDM output characteristics. In the first setting of input machining parameters, aluminum powder improves the surface roughness of TiAl sample about 32% comparing with EDM case and also aluminum particles with the size of 2 μm, in the second setting of input parameters lead to 54% enhancement of MRR comparing with EDM case. The electrochemical corrosion results show that, corrosion resistance of the samples which are machined by graphite and chrome powders respectively are about three and two times more than the sample which is machined without powder.  相似文献   

18.
Parametric glass milling is presented to machine periodical circular channels on the glass plates for manufacturing micro testing devices. An end mill traverses in the linear motion during the workpiece rotation, which are synchronized by simultaneous control. The glass milling is controlled by 4 parameters in a mathematical model without NC program. Based on the principle of the parametric machining and the effect of the cutter axis inclination on the cutting process, a milling machine was developed to perform the parametric glass milling with an inclined ball end mill. The cutter axis inclination and the actual feed rate are associated with the critical feed rate, the maximum feed rate at which a crack-free surface is finished. As a machining example, a periodical circular channel was machined with a transparent surface by the simultaneous control.  相似文献   

19.
This paper focuses on investigating several aspects of the machining process from an ecological perspective, the result being a macro-level analysis. The analysis presented here considers not only the environmental impact of the material removal process itself, but also the impact of the associated processes such as the material preparation, and the scrap processing. A macro-level assessment of the comparative life cycle environmental performance of the near-dry machining (NDM) using TiN-coated carbide tools and the flood machining (FM) is performed by a case study referring to the gear milling. The assessment, using the SimaPro 7.1.5 software and the ecoinvent1.5 database, includes combined Life Cycle Assessment (LCA) of the workpiece material, the scrap processing, the use of lubrication, and the energy consumption.  相似文献   

20.
Powder mixed near dry electrical discharge machining (PMND-EDM) is a novel electrical discharge machining (EDM) process. It is proposed to further improve the machining efficiency of dry EDM. The principle of material removal in PMND-EDM is illustrated and its deionization principle is proposed. The influence of residual heat on MRR is analyzed. The concept of superfluous residual heat is proposed. The material removal rate (MRR), the main index of machining efficiency for PMND-EDM process, is researched. Single factor experiments are performed to get effect of peak current, pulse on time, pulse off time, flow rate, tool rotational speed, air pressure and powder concentration on MRR under different material combinations of tool electrode and workpiece electrode. Thermal phenomena in PMND-EDM are illustrated. Effect of each process parameter on MRR of PMND-EDM is gotten and analyzed based on the deionization principle of PMND-EDM. Differences in MRR under different material combinations are found out. Brass tool electrode and W18Cr4V workpiece gain higher MRR under most of discharge conditions, while the superiority of copper tool electrode and 45 carbon steel workpiece in MRR arise when there is improper heat dissipation. The difference is analyzed based on the deionization principle of PMND-EDM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号