首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 310 毫秒
1.
Ozonation of aniline promoted by activated carbon   总被引:1,自引:0,他引:1  
The removal of aniline from aqueous solutions by simultaneous use of ozone and activated carbon was investigated at different solution pH. For comparative purposes, single ozonation and adsorption on activated carbon were carried out in the same experimental set-up. In order to evaluate the role of the activated carbon surface chemistry during ozonation, a commercial activated carbon, Norit GAC 1240 PLUS, was submitted to oxidation in the liquid phase with HNO(3). The texture and surface chemistry of the activated carbon samples were characterized. During ozonation, complete conversion of aniline was achieved after approximately 20 min, regardless of the presence of activated carbon. In all cases, several by-products were formed during ozonation. Nitrobenzene, o- and p-aminophenol were the primary aromatic oxidation by-products identified. In terms of TOC removal, best results were achieved by the simultaneous use of ozone and activated carbon. Though there is a strong contribution of adsorption, a considerable synergetic effect between ozone and activated carbon is observed. In general, activated carbon promotes the reaction of ozonation enhancing the efficiency of this treatment process. The basic activated carbon presented greater activity in this process leading to higher mineralization rates.  相似文献   

2.
Antibiotic formulation effluents are well known for their difficult elimination by traditional bio-treatment methods and their important contribution to environmental pollution due to its fluctuating and recalcitrant nature. In the present study the effect of ozonation on the degradation of oxytetracycline (OTC) aqueous solution (100mgl(-1)) at different pH values (3, 7 and 11) was investigated. Ozone (11mgl(-1) corresponds the concentration of ozone in gas phase) was chosen considering its rapid reaction and decomposition rate. The concentration of oxytetracycline, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and BOD5/COD ratio were the parameters to evaluate the efficiency of the ozonation process. In addition, the toxic potential of the OTC degradation was investigated by the bioluminescence test using the LUMIStox 300 instrument and results were expressed as the percentage inhibition of the luminescence of the marine bacteria Vibrio fischeri. The results demonstrate that ozonation as a partial step of a combined treatment concept is a potential technique for biodegradability enhancement of effluents from pharmaceutical industries containing high concentration of oxytetracycline provided that the appropriate ozonation period is selected. At pH 11 and after 60min of ozonation of oxytetracycline aqueous solutions (100 and 200mgl(-1)) the BOD5/COD ratios were 0.69 and 0.52, respectively. It was also shown that COD removal rates increase with increasing pH as a consequence of enhanced ozone decomposition rates at elevated pH values. The results of bioluminescence data indicate that first by-products after partial ozonation (5-30min) of OTC were more toxic than the parent compound.  相似文献   

3.
Ozonation characteristics of synthetic Procaine Penicillin G (PPG) formulation effluent were investigated in a semi-batch ozone reactor at different pH (3, 7 and 12), ozone feed rates (600-2600 mg h-1) and COD values (200-600 mg l-1). Ozonation of aqueous PPG effluent resulted in 37 (82)% COD removal after 60 (120) min ozonation when the reaction pH was kept constant at pH=7.900 mg l-1 (corresponding to 50% of the total introduced) ozone was absorbed during a reaction period of 1 h. The effects of increasing the applied ozone dose and the initial COD on the COD abatement rates of PPG effluent were also studied. Results have indicated that increasing the ozone dose and decreasing the COD content both have positive effects on COD removal rates. The significant contribution of the free radical (.OH) reaction pathway to PPG ozonation could be traced using tert-butyl alcohol as the .OH probe compound at varying concentrations. The bimolecular reaction rate constants for the direct reaction of PPG with ozone were found as 152 and 2404 M-1 h-1 at pH=3 and 7, respectively, using the gas phase ozone partial pressures determined from of the outlet gas stream analysis. It could be demonstrated that ozone decomposition to free radicals being triggered by increasing the pH from 3 to 7 is essential for the rate enhancement of PPG effluent ozonation.  相似文献   

4.
Seitz W  Jiang JQ  Schulz W  Weber WH  Maier D  Maier M 《Chemosphere》2008,70(7):1238-1246
The present work describes the investigation of the formation of oxidation by-products of the iodinated X-ray contrast medium (ICM) iomeprol during ozonation in water treatment. Bench-scale investigations revealed that ICM can be partly oxidized during ozonation processes, whereas the ionic diatrizoic acid showed the lowest reactivity. Iomeprol, as a representative of ICM, was not fully mineralized during ozonation. Thus, unknown oxidation by-products were formed. Aqueous solutions of iomeprol were treated by ozonation in order to assess the formation of oxidation by-products. The by-products were characterized by different liquid chromatography methods including detection of single-stage mass spectra, product ion mass spectra, and induced in-source fragmentation for analysis of iodine containing oxidation by-products. Aldehyde and carbonyl containing compounds were proposed to be among the stable by-products. A derivatization step confirms that the aldehyde and carbonyl moieties are major functional groups in oxidation by-products of iomeprol. Furthermore, oxidation by-products of iomeprol were detected at the outlet of an ozone reactor at a full-scale waterworks. However, the toxicological relevance of the by-products is a major future research tasks.  相似文献   

5.
The extensive use of Bisphenol A (BPA) in the plastics industry has led to increasing reports of its presence in the aquatic environment, with concentrations of ng L?1 to μg L?1. Various advanced oxidation processes, including ozonation, have been shown to effectively degrade BPA. This paper reviews the current advancements in using ozone to remove BPA from water and wastewater.Most of the published work on the oxidation of BPA by ozone has focused on the efficiency of BPA removal in terms of the disappearance of BPA, and the effect of various operational parameters such as ozone feed rate, contact time and pH; some information is available on the estrogenic activity of the treated water. Due to increasing operational reliability and cost effectiveness, there is great potential for industrial scale application of ozone for the treatment of BPA. However, there is a significant lack of information on the formation of oxidation by-products and their toxicities, particularly in more complex matrices such as wastewater, and further investigation is needed for a better understanding of the environmental fate of BPA.  相似文献   

6.
7.
采用自蔓延溶胶凝胶法分别制备了铁氧化物和铁铜复合氧化物催化剂,以酸性红B为降解对象,对比了单独臭氧氧化、铁氧化物和铁铜复合氧化物催化臭氧氧化对酸性红B的降解效果,考察了磁力搅拌速度(500~1 640 r/min)、溶液pH(3~11)、臭氧投加速率(3.55~28.4 mg/min)对铁铜复合氧化物催化性能的影响。结果表明,与单独臭氧氧化比较,铁氧化物和铁铜复合氧化物均能加速酸性红B的降解,促进色度和COD的去除,结合催化剂的表征结果,推断催化剂表面羟基促进臭氧分解产生.OH是其氧化性能较好的主要原因,另外,催化剂的吸附能力对催化性能也有一定影响。随着磁力搅拌速度、溶液pH、臭氧投加速率的增大,铁铜复合氧化物催化臭氧氧化酸性红B的效果越好。  相似文献   

8.
Zhang T  Lu J  Ma J  Qiang Z 《Chemosphere》2008,71(5):911-921
Fluorescence spectra were applied to investigate the structural changes of four dominant dissolved natural organic matter (DOM) fractions of a filtered river water before and after ozonation and catalytic ozonation. The ozonation and catalytic ozonation with synthetic goethite (FeOOH) and cerium dioxide (CeO(2)) were carried out under normal conditions, i.e. pH 7, reaction time of 10 min, and ozone/DOC ratio of about 1. The fluorescence spectra were recorded at both excitation-emission matrix (EEM) and synchronous scanning modes. EEM results reveal that ozonation of these DOM fractions causes a significant decrease of the aromaticity of humic-like structures and an increase of electron withdrawing groups, e.g., carboxylic groups. The catalysts can further improve the destruction of the humic-like structures in catalytic ozonation. Synchronous spectra reveal that ozonation of hydrophobic acid and hydrophilic acid (HIA) yields a significant amount of by-products with low aromaticity and low molecular weight. Catalytic ozonation enhances substantially the formation of these by-products from HIA and improves the destruction of highly polycyclic aromatic structures for all examined DOM fractions.  相似文献   

9.
Simazine, [2-chloro, 4,6-bis(ethylamino)-1,3,5-s-triazine], a common herbicide found in surface and ground water has been ozonized in continuous flow mode. Typical operating variables in ozonation processes have been investigated. Thus, the ozone dose fed to the system exerted a positive effect, while the gas flow rate did not influence the efficiency of the process provided ozone mass flow rate was kept constant. Increasing the pH led to a higher extension of the free radical degradation of simazine and, therefore, to a higher efficiency of the process. Also, addition of free radical promoters, i.e. hydrogen peroxide, did result in a significant improvement of the simazine removal rate. A first approach to process economy showed the system ozone/hydrogen peroxide as the most advantageous in terms of electrical energy requirements.  相似文献   

10.
Tong SP  Liu WP  Leng WH  Zhang QQ 《Chemosphere》2003,50(10):1359-1364
The characteristics of different types of MnO2 catalytic ozonation of sulfosalicylic acid (SSal) and propionic acid (PPA) have been investigated in this paper. The experimental results show the dependence of catalytic activity of MnO2 on organic compounds and the pH of solutions, but it is independent on the type of MnO2. For example, three types of MnO2 have not any catalytic activity when ozonation of PPA under the condition of this experiment. All MnO2 catalytic ozonation of SSal at pH=1.0 have a greater total organic carbon removal than ozonation alone has, however, at pH=6.8 and 8.5, catalytic efficiency is not observed. Furthermore, the batch experimental results indicate that there are no direct relationship between the activity of metal oxide catalytic decomposition of ozone and that of its catalytic degradation of organic compounds.  相似文献   

11.
Simazine, [2-chloro, 4,6-bis(ethylamino)-1,3,5-s-triazine], a common herbicide found in surface and ground water has been ozonized in continuous flow mode. Typical operating variables in ozonation processes have been investigated. Thus, the ozone dose fed to the system exerted a positive effect, while the gas flow rate did not influence the efficiency of the process provided ozone mass flow rate was kept constant. Increasing the pH led to a higher extension of the free radical degradation of simazine and, therefore, to a higher efficiency of the process. Also, addition of free radical promoters, i.e. hydrogen peroxide, did result in a significant improvement of the simazine removal rate. A first approach to process economy showed the system ozone/hydrogen peroxide as the most advantageous in terms of electrical energy requirements.  相似文献   

12.
Photo-Fenton-assisted ozonation of p-Coumaric acid in aqueous solution   总被引:1,自引:0,他引:1  
The degradation of p-Coumaric acid present in olive oil mill wastewater was investigated as a pretreatment stage to obtain more easily biodegradable molecules, with lower toxicity that facilitates subsequent anaerobic digestion. Thus, photo-Fenton-assisted ozonation has been studied and compared with ozonation at alkaline pH and conventional single ultraviolet (UV) and acid ozonation treatments. In the combined process, the overall kinetic rate constant was split into various components: direct oxidation by UV light, direct oxidation by ozone and oxidation by hydroxyl radicals. Molecular and/or radical ozone reaction was studied by conducting the reaction in the presence and absence of tert-butylalcohol at pHs 2, 7 and 9. Ozone oxidation rate increases with pH or by the addition of Fenton reagent and/or UV radiation due to generation of hydroxyl radicals, *OH. Hydrogen peroxide and ferrous ion play a double role during oxidation since at low concentrations they act as initiators of hydroxyl radicals but at high concentrations they act as radical scavengers. Finally, the additional levels of degradation by formation of hydroxyl radicals have been quantified in comparison to the conventional single processes and an equation is proposed for the reaction rate as a function of studied operating variables.  相似文献   

13.
Kinetics of photodegradation and ozonation of pentachlorophenol   总被引:3,自引:0,他引:3  
The oxidation of 2,3,4,5,6-pentachlorophenol (PCP) has been carried out by a photodecomposition process using a polychromatic UV irradiation, and by an ozonation process. In the photodegradation process, the pH accelerated the decomposition rate and the approximate first-order rate constants were evaluated, with values between 0.16+/-0.005 min(-1) at pH=3 and 0.26+/-0.007 min(-1) at pH=9. A more rigorous kinetic study led to the determination of the quantum yields of the reaction, with values of 200+/-7x10(-3) mol/Eins for pH=3 and 22+/-1.1x10(-3) mol/Eins for pH=9. In the ozonation process, the rate constants for the reaction between ozone and PCP were determined by means of a competition kinetics, with values in the range from 0.67x10(5) to 314x10(5) l/mols. The specific rate constants for the un-dissociated and dissociated forms of PCP were also calculated. Finally, in both processes, the intermediate reaction products were identified, the most important being tetrachlorocatechol, tetrachlorohydroquinone and tetra-p-chlorobenzoquinone. Free chloride ion released, which was favored at high pHs, was also followed in both processes.  相似文献   

14.

Background, aim and scope

Estrogenic and non-estrogenic chemicals typically co-occur in the environment. Interference by non-estrogenic chemicals may confound the assessment of the actual estrogenic activity of complex environmental samples. The aim of the present study was to investigate whether, in which way and how seriously the estrogenic activity of single estrogens and the observed and predicted joint action of estrogenic mixtures is influenced by toxic masking and synergistic modulation caused by non-estrogenic chemical confounders.

Materials and methods

The yeast estrogen screen (YES) was adapted so that toxicity and estrogenicity could be quantified simultaneously in one experimental run. Mercury, two organic solvents (dimethyl sulfoxide (DMSO) and 2,4-dinitroaniline), a surfactant (LAS-12) and the antibiotic cycloheximide were selected as toxic but non-estrogenic test chemicals. The confounding impact of selected concentrations of these toxicants on the estrogenic activity of the hormone 17ß-estradiol was determined by co-incubation experiments. In a second step, the impact of toxic masking and synergistic modulation on the predictability of the joint action of 17ß-estradiol, estrone and estriol mixtures by concentration addition was analysed.

Results

Each of the non-estrogenic chemicals reduced the apparent estrogenicity of both single estrogens and their mixtures if applied at high, toxic concentrations. Besides this common pattern, a highly substance- and concentration-dependent impact of the non-estrogenic toxicants was observable. The activity of 17ß-estradiol was still reduced in the presence of only low or non-toxic concentrations of 2,4-dinitroaniline and cycloheximide, which was not the case for mercury and DMSO. A clear synergistic modulation, i.e. an enhanced estrogenic activity, was induced by the presence of slightly toxic concentrations of LAS-12. The joint estrogenic activity of the mixture of estrogens was affected by toxic masking and synergistic modulation in direct proportion to the single estrogens, which allowed for an adequate adaptation of concentration addition and thus unaffected predictability of the joint estrogenicity in the presence of non-estrogenic confounders.

Discussion

The modified YES proved to be a reliable system for the simultaneous quantification of yeast toxicity and estrogen receptor activation. Experimental results substantiate the available evidence for toxic masking as a relevant phenomenon in estrogenicity assessment of complex environmental samples. Synergistic modulation of estrogenic activity by non-estrogenic confounders might be of lower importance. The concept of concentration addition is discussed as a valuable tool for estrogenicity assessment of complex mixtures, with deviations of the measured joint estrogenicity from predictions indicating the need for refined analyses.

Conclusions

Two major challenges are to be considered simultaneously for a reliable analysis of the estrogenic activity of complex mixtures: the identification of known and suspected estrogenic compounds in the sample as well as the substance- and effect-level-dependent confounding impact of non-estrogenic toxicants.

Recommendations and perspectives

The application of screening assays such as the YES to complex mixtures should be accompanied by measures that safeguard against false negative results which may be caused by non-estrogenic but toxic confounders. Simultaneous assessments of estrogenicity and toxicity are generally advisable.  相似文献   

15.
对臭氧氧化去除焦化废水生化出水COD的反应动力学及其影响因素进行了实验研究,结果表明,在臭氧投加量为8.50mg/min,反应温度为20'E和初始pH为10.61条件下,对COD的降解符合表观一级反应动力学模型,其相关系数R。=0.9991,表观反应速率常数k。。=1.01×10^-3s-1。该条件下,臭氧氧化对COD的降解主要来源于高活性羟基自由基的强氧化作用。在不同的臭氧投加量(4.25~12.75mg/min)、不同的反应温度(10~40℃)和不同的初始pH(3.76~12.53)下,COD的降解也同样遵循一级反应动力学规律。随着臭氧投加量的增大,COD降解的表观反应速率常数从(0.554×10^-3)s-1增加到(1.06×10&-3)s-1;随着反应温度的升高,表观反应速率常数从(0.427×10^-3)s-1增加到(1.40×10-3)s-1,温度越高反应速率提高的幅度却越小;在初始pH3.76~10.61范围内,表观反应速率常数从(0.218×10^-3)s-1增加到(1.01×10^-3)s-1,在初始pH为12.53时表观反应速率常数下降到(0.857×10^-3)s-1。  相似文献   

16.
Chu W  Chan KH  Graham NJ 《Chemosphere》2006,64(6):931-936
In this study, the degradation of atrazine (ATZ) by ozone (O3) oxidation and its associated processes (i.e. UV, UV/O3) in the presence and absence of surfactant was investigated and compared. A non-ionic surfactant, Brij 35, was selected. It was found that the presence of a low concentration of surfactant could improve the removal of ATZ by increasing the dissolution of ozone and the indirect generation of hydroxyl radicals. The saturated ozone level and the reaction rate constants were increased with increasing the concentration of surfactant and then decreased at higher surfactant doses at pH level of 2.5. A similar trend was observed at pH level of 7.0 in the presence of bicarbonate ion, because it is capable of deactivating the hydroxyl radicals generating at higher pH level. However, when the radical reactions become dominant in the ozonation (at pH 7.0 without bicarbonate), the saturated ozone level was higher than that with bicarbonate and the kinetic rate constants were increased first and levelled off with increasing of the dose of surfactant. Through the examining of a proposed unit performance index, the low concentration of surfactant is surely beneficial to the ozonation process. Besides, the direct photolysis and photo-assisted ozonation were compared to the ozonation. A significant enhancement on the decay rate of ATZ was resulted exclusively by adding the surfactant. An enhancement index for quantifying the improvement of the various processes was developed.  相似文献   

17.
Atrazine (6-chloro-N-ethyl-N'-isopropyl-1,3,5-triazinedyl-2,4-diamine) was treated with ozone alone and in combination with hydrogen peroxide or UV radiation in three surface waters. Experiments were carried out in two bubble reactors operated continuously. Variables investigated were the ozone partial pressure, temperature, pH, mass flow ratio of oxidants fed: hydrogen peroxide and ozone and the type of oxidation including UV radiation alone. Residence time for the aqueous phase was kept at 10 min. Concentrations of some intermediates, including deethylatrazine, deisopropylatrazine and deethyldeisopropylatrazine, were also followed. The nature of water, specifically the alkalinity and pH were found to be important variables that affected atrazine (ATZ) removal. Surface waters with low alkalinity and high pH allowed the highest removal of ATZ to be reached. There was an optimum hydrogen peroxide to ozone mass flow ratio that resulted in the highest ATZ removal in each surface water treated. This optimum was above the theoretical stoichiometry of the process. Therefore, to reach the maximum removal of ATZ in a O3/H2O2 process, more hydrogen peroxide was needed in the surface waters treated than in ultrapure water under similar experimental conditions. In some cases, UV radiation alone resulted in the removal of ATZ higher than ozonation alone. This was likely due to the alkalinity of the surface water. Ozonation and UV radiation processes yield different amounts of hydrogen peroxide. Combined ozonations (O3/H2O2 and O3/UV) lead to ATZ removals higher than single ozonation or UV radiation but the formation of intermediates was higher.  相似文献   

18.
Oya M  Kosaka K  Asami M  Kunikane S 《Chemosphere》2008,73(11):1724-1730
Formation of N-nitrosodimethylamine (NDMA) by ozonation of commercially available dyes and related compounds was investigated. Ozonation was conducted using a semi-batch type reactor, and ozone concentration in gas phase and the ozone gas flow were 10 mg L(-1) and 1.0 L min(-1), respectively. NDMA was formed by 15 min of ozonation of seven out of eight selected target compounds (0.05 mM) at pH 7. All the target compounds with N,N-dimethylamino functions were NDMA precursors in ozonation. The lowest and highest NDMA concentrations after ozonation of the target compounds were 13 ng L(-1) for N,N-dimethylformamide (DMF) and 1600 ng L(-1) for N,N-dimethyl-p-phenylenediamine (DMPD), respectively. NDMA concentrations after 15 min of ozonation of 0.05 mM methylene blue (MB) and DMPD increased with an increase in pH in its range of 6-8. The effects of coexisting compounds on NDMA concentrations after 15 min of ozonation of 0.05 mM MB and DMPD were examined at pH 7. NDMA concentrations after ozonation of MB and DMPD increased by the presence of 0.05 mM (0.7 mg L(-1) as N) nitrite (NO(2)(-)); 5000 ng L(-1) for MB and 4000 ng L(-1) for DMPD. NDMA concentration after MB ozonation decreased by the presence of 5mM tertiary butyl alcohol (TBA), a hydroxyl radical (HO.) scavenger, but that after DMPD ozonation was increased by the presence of TBA. NDMA concentrations after ozonation of MB and DMPD were not affected by the presence of 0.16 mM (5.3 mg L(-1)) hydrogen peroxide (H(2)O(2)). When 0.05 mM MB and DMPD were added to the Yodo and Tone river water samples, NDMA concentrations after 15 min of their ozonation at pH 7 increased compared with those in the case of addition to ultrapure water samples.  相似文献   

19.
Valdés H  Zaror CA 《Chemosphere》2006,65(7):1131-1136
Ozone oxidation combined with activated carbon adsorption (O(3)/AC) has recently started to be developed as a single process for water and wastewater treatment. While a number of aspects of aqueous ozone decomposition are well understood, the importance and relationship between aqueous ozone decomposition and organic contaminant degradation in the presence of activated carbon is still not clear. This study focuses on determining the contribution of homogeneous and heterogeneous reactions to organic contaminants removal in O(3)/AC system. Benzothiazole (BT) was selected as a target organic pollutant due to its environmental concern. A reactor system based on a differential circular flow reactor composed by a 19 cm(3) activated carbon fixed bed column and 1 dm(3) storage tank was used. Ozone was produced from pure and dry oxygen using an Ozocav ozone generator rated at 5 g O(3)h(-1). Experimental results show that BT removal rate was proportional to activated carbon dosage. Activated carbon surface contribution to BT oxidation reactions with ozone, increased with pH in absence of radical scavengers. The radical reaction contribution within the pH range 2-11 accounted for 67-83% for BT removal in O(3)/AC simultaneous treatment. Results suggest that at pH higher than the pH of the point of zero charge of the activated carbon dissociated acid groups such as carboxylic acid anhydrides and carboxylic acids present on activated carbon surface could be responsible for the observed increase in the ozone decomposition reaction rate. A simplified mechanism and a kinetic scheme representing the contribution of homogeneous and heterogeneous reactions on BT ozonation in the presence of activated carbon is proposed.  相似文献   

20.
The objective of this study was to assess the removal efficiencies of secondary wastewater treatment processes for compounds causing endocrine disrupting activity. The study used bioassays and chemical measurements, such as gas chromatography with mass spectrometry and enzyme immunosorbent assays. A total of seven full-scale water reclamation facilities using different unit operations and two pilot-scale membrane bioreactors were examined. Findings of this study imply that estrogenic disrupting activity in primary effluent is mainly caused by two steroidal hormones (17beta-estradiol and estriol) and, to a lesser extent, by synthetic chemicals, such as bisphenol A, 4-nonylphenol, and 4-tert-octylphenol. During secondary treatment, steroidal hormones were removed to a higher degree than nonylphenol and bisphenol A. The total estrogenic activity was removed by an average of 96%. The remaining concentrations of targeted steroids in secondary effluents, except for estriol, still had the potential to elicit a positive response in the human breast cell cancer assay. For the majority of facilities, the remaining activity was likely attributed to residual concentrations of two steroidal hormones (17beta-estradiol and estriol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号