首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to produce renewable energy from exhausted coffee residue, which is a form of biomass. As coffee preference continues to increase, the importation of coffee beans has been increasing sharply. However, the amount of coffee that is actually consumed is only about 0.2% of coffee beans, while the spent coffee beans are discarded in the form of exhausted coffee residue. Hydrothermal carbonization is a method of producing an improved fuel from renewable energy sources by changing the physical and chemical properties of biochars. Biochars were obtained from a variety of reaction temperatures during hydrothermal carbonization and analyzed using elemental analysis, ultimate analysis, and calorific value measurement. The atomic C/O and C/H ratios of all obtained biochars decreased and were found to be similar to those of lignite and sub-bituminous coal. The highest energy recovery efficiency of biochar indicates that the optimum reaction temperature for hydrothermal carbonization was between 210 and 240 °C, which produced biochars with calorific value of approximately 26–27 MJ/kg. The spectra of biochars obtained from Fourier transform infrared spectroscopy (FTIR) showed fewer C–O and aliphatic C–H functional groups, but more carbonyl C=O functional groups and aliphatic CH x groups. The results of this study indicate that hydrothermal carbonization can be used as an effective means to generate highly energy-efficient renewable fuel resources from coffee residue. The thermogravimetric analysis provided the changing combustion characteristics due to increased fixed carbon content.  相似文献   

2.
Social and health issues are now considered as an integral part of waste management system. Scavengers or waste pickers are the main victims in waste management sector. Objective of the cross sectional study carried out for a group of scavengers living in huts was to highlight the socio-demographic characteristic, working conditions and occupational health risks with main emphasis on relation of infectious disease prevalence and waste picking activity in Bahawalpur area. Of the 100 waste pickers and 100 non-waste pickers HIV was not detected in any participant, HBV was detected in 4 and 2 % and HCV in 28 and 6 % respectively. Considerable differences were observed in the detection rates of HCV (OR: 6.09, 95 % CI 2.4, 15.5; p = 0.000) and either markers (OR: 5.4, 95 % CI 2.35, 12.5; p = 0.000) in waste pickers compared to general population. The higher incidence of Hepatitis among waste pickers compared to non waste pickers is a function of their occupation, unhygienic living conditions, lack of immunization, ignorance and need of training regarding waste handling.  相似文献   

3.
Biological devulcanization of ground tires (GTs) was evaluated by eleven different bacteria belonging to the genera Thiobacillus, Gordonia, Nocardia, Amycolaptopsis and Pseudomonas. The GTs were treated by each bacterium in a mineral medium and devulcanization was measured by increasing the sulfate of the medium and decreasing the sulfur of the GTs. The effects of incubation time (10 and 20 days) and the percent of ground tire in the medium (0.5 and 5 w/v %) on desulfurization were investigated. No significant changes were observed after 10 days of incubation. The total sulfur contents of all bio-treated GTs were decreased by 6–21% in 0.5% GTs after 20 days of incubation. While in 5% GTs, the total sulfur contents were mainly decreased using Thiobacillus ferroxidans DSMZ 583 and PTCC 1647 up to 27 and 15%, respectively. SEM photograph further indicated a good coherency interface between the bacteria and the GTs. Subsequently, Taguchi method was applied for the optimization of the culture condition of DSMZ 583. An L12 orthogonal array was performed by which the effects of eleven factors in two levels were evaluated. It was found that the amount and mesh size of GTs are the most important factors in biological devulcanization of ground tires.  相似文献   

4.
Pollutant emissions from co-firing of refuse derived fuel (RDF) and coal were investigated in a vortexing fluidized bed combustor (VFBC). RDF-5 was made of common municipal solid waste (MSW). CaCO3 was injected in the combustor to absorb HCl at 850 °C. The results show that NOx and HCl emissions increase with RDF-5 co-firing ratio. The NOx concentration in flue gas at the bottom of the combustor is higher than that at the top. However, the trend of HCl released is reverse compared with NOx emissions. It was found that the HCl concentration decreases with increasing the molar ratio of Ca/Cl. However, the effect of CaCO3 addition on HCl retention is not significant when the molar ratio of Ca/Cl is higher than 5. The chlorine content in fly ash increases obviously with the molar ratio of Ca/Cl. PCDD/Fs emissions decrease slightly with an addition of CaCO3. In this study incomplete combustion is regarded as the main cause for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) formation.  相似文献   

5.
Torrefaction is thermo-chemical process which can improve solid fuel quality as well as grindability. In previous studies, torrefaction has been studied mainly for removal of moisture and for improving grindability. In this experiment, the characteristics of torrefied waste sawdust were studied especially for its energy yield. Hence, torrefaction was performed on varying reaction temperatures (200, 220, 240, 260, 280, 300 °C) and solid residence time (10, 30, 60 min). The results indicated that the yield of torrefaction decreases with increasing temperature and residence time. It was found that above 280 °C, the yield got remarkably decreased. The lowest yield was obtained at the residence time of 60 min. It was also noticed that the HHV of torrefied samples increases with increasing temperature. The highest HHV was found to be 26.09 MJ/kg which was obtained at 60 min and 300 °C. However, the highest energy yield was obtained to be 104.17 % which was noticed at 30 min and 260 °C.  相似文献   

6.
The main objective of this study was to determine whether methane potential of waste could be estimated more easily by a limited number of waste characterization variables. 36 samples were collected from 12 locations and 3 waste depths in order to represent almost all waste ages at the landfill. Actual remaining methane potential of all samples was determined by the biochemical methane potential (BMP) tests. The cumulative methane production of closed landfill (cLF) samples reached 75–125 mL at the end of experiment duration, while the samples from active landfill (aLF) produced in average 216–266 mL methane. The average experimental k and L 0 values of cLF and aLF were determined by non-linear regression using BMP data with first-order kinetic equation as 0.0269 day?1–30.38 mL/g dry MSW and 0.0125 day?1–102.1 mL/g dry MSW, respectively. The principal component analysis (PCA) was applied to analyze the results for cLF and aLF along with BMP results. Three PCs for the data set were extracted explaining 72.34 % variability. The best MLR model for BMP prediction was determined for seven variables (pH–Cl–TKN–NH4–TOC–LOI–Ca). R 2 and Adj. R 2 values of this best model were determined as 80.4 and 75.3 %, respectively.  相似文献   

7.
With 2020 energy targets set out by the EU fast approaching, the UK is trying to source a higher proportion of its energy from renewable resources. Coupled with this, a growing population and increasing trends in consumer demand have resulted in national waste loads increasing. A possible solution to both issues is energy-from-waste (EfW) technologies. Many studies have focused on municipal solid waste (MSW) as a potential feedstock, but appear to overlook the potential benefits of commercial and industrial waste (C&IW). In this study, samples of C&IW were collected from three North West waste management companies and Lancaster University campus. The samples were tested for their gross and net calorific value, moisture content, ash content, volatile matter, and also elemental composition to determine their suitability in EfW systems. Intra-sample analysis showed there to be little variation between samples with the exception two samples, from waste management site 3, which showed extensive variation with regards to net calorific value, ash content, and elemental analysis. Comparisons with known fuel types revealed similarities between the sampled C&IW, MSW, and refuse derived fuel (RDF) thereby justifying its potential for use in EfW systems. Mean net calorific value (NCV) was calculated as 9.47 MJ/kg and concentrations of sulphur, nitrogen, and chlorine were found to be below 2%. Potential electrical output was calculated using the NCV of the sampled C&IW coupled with four differing energy generation technologies. Using a conventional incinerator with steam cycle, total electrical output was calculated as 24.9 GWh, based on a plant operating at 100,000 tpa. This value rose to 27.0 GWh when using an integrated gasification combined cycle. A final aspect of this study was to deduce the potential total national electrical output if all suitable C&IW were to be used in EfW systems. Using incineration coupled with a steam turbine, this was determined to be 6 TWh, 1.9% of the national demand thereby contributing 6.5% towards the UK’s 2020 renewable electricity target.  相似文献   

8.
9.
The present study aims to investigate the potential of nonedible oilseed Jatropha (Jatropha curcas) and Karanja (Pongamia pinnata) defatted residual biomasses (whole seed, kernel, and hull), as solid biofuel. These biomasses showed good carbon contents (39.8–44.5%), whereas, fewer amounts were observed for sulfur (0.15–0.90%), chlorine (0.64–1.76%), nitrogen (0.9–7.2%) and ash contents (4.0–8.7%). Their volatile matter (60.23–81.6%) and calorific values (17.68–19.98 MJ/kg) were found to be comparable to coal. FT-IR and chemical analyses supported the presence of good amount of cellulose, hemicellulose and lower lignin. The pellets prepared without any additional binder, showed better compaction ratio, bulk density and compressive strength. XRF analysis carried out for determination of slagging–fouling indices, suggested their ash deposition tendencies in boilers, which can be overcome significantly with the optimization of the blower operations and control of ash depositions. Thus, overall various chemical, physical properties, thermal decomposition, surface morphological studies and their high biofuel reactivity indicated that residual biomasses of Jatropha and Karanja seeds have high potential to be utilized as a solid biofuel.  相似文献   

10.
To recycle polyurethane foam waste generated from electric appliance recycling centers for use as fuel in a gasification process, polyurethane solid refuse fuel fabricated as pellets was analyzed for the characteristics of elemental composition, proximate analysis, heating value, and thermo-gravimetric testing. It has a high heating value of 29.06 MJ/kg with a high content of combustibles, which could be feasibly used in any thermal process. However, the nitrogen content, of up to 7 %, was comparably higher than for other fuels such as coal, biomass, and refuse-derived fuel, and may result in the emission of nitrogenous pollutant gases of HCN and NH3. By conducting gasification experiments on polyurethane solid refuse fuel in a fixed-bed reactor, a syngas with a heating value of 9.76 kJ/m3 and high content of both H2 and CO were produced with good gasification efficiency; carbon conversion 54 %, and cold gas efficiency 60 %. The nitrogenous pollutant gases in syngas were measured at the concentrations of 160 ppm hydrogen cyanide and 40 ppm ammonia, which may have to be reduced using proper cleaning technologies prior to the commercialization of gasification technology for polyurethane waste.  相似文献   

11.
Dynamic studies on the volatilization of lead from CaO–SiO2–Al2O3 molten slags were conducted in a lab-scale melting furnace from 1623 to 1773 K under different mixed gas atmospheres of CO 0.05–0.3 atm to CO2 0–0.3 atm to N2 (balance), HCl 1.7 × 10?3–6.7 × 10?3 atm to N2 (balance), and H2S 3.0 × 10?4 to 1.7 × 10?3 atm to N2 (balance). The slag samples consisted of the mixed powders of 20–50 wt% CaO, 30–60 wt% SiO2, and 10–40 wt% Al2O3, containing 2000 ppm PbO.Results showed that the rates of volatilization of lead from the CaO–SiO2–Al2O3 molten slags under the N2–CO–CO2, N2HCl, and N2–H2S gas atmospheres were higher than those under the simulated air (N2–O2), which increased with CO, HCl, and H2S partial pressures. At \(p_{{HCl}}\)  =  \(p_{H_{2}S}\)  = 1.7 × 10?3 atm, the apparent rate constants for the volatilization of lead under the N2–H2S and N2HCl gas atmospheres were nearly equal, which increased with a rise in temperature. Results also showed that the rate of volatilization of lead from the molten slag decreased drastically with the increasing viscosity of the molten slag, in the viscosity range lower than 3 Pa s. Consequently, the volatilization of lead from the CaO–SiO2–Al2O3 molten slag was significantly influenced by CO, HCl, and H2S partial pressures and by the viscosity of the molten slag.  相似文献   

12.
A study was made of the pyrolysis of tyre particles, with the aim of determining the possibilities of using the products resulting from the process as fuel. Three final temperatures were used, determined from thermogravimetric data. The design of the experiment was a horizontal oven containing a reactor into which particles of the original tyre were placed. After the process, a solid fraction (char) remained in the reactor, while the gases generated went through a set of scrubbers where most of the condensable fraction (oils) was retained. Finally, once free of this fraction, the gases were collected in glass ampoules. Solid and liquids fractions were subjected to thermogravimetric analyses in order to study their combustibility. The gas fraction was analysed by means of gas chromatography to establish the content of CO, CO2, H2 and hydrocarbons present in the samples (mainly components of gases produced in the pyrolysis process). A special study was made of the sulphur and chlorine content of all the fractions, as the presence of these elements could be problematic if the products are used as fuel. Tyre pyrolysis engenders a solid carbon residue that concentrates sulphur and chorine, with a relatively high calorific value, although not so high as that of the original tyre. The liquid fraction produced by the process has a high calorific value, which rises with the final temperature, up to 40 MJ/kg. The chlorine content of this fraction is negligible. Over 95% of the gas fraction, regardless of the final temperature, is composed of hydrocarbons of a low molecular weight and hydrogen, this fraction also appearing to be free of chlorine.  相似文献   

13.
Thermocatalytic degradation of high density polyethylene (HDPE) was carried out using acid activated fire clay catalyst in a semi batch reactor. Thermal pyrolysis was performed in the temperature range of 420–500 °C. The liquid and gaseous yields were increased with increase in temperature. The liquid yield was obtained 30.1 wt% with thermal pyrolysis at temperature of 450 °C, which increased to 41.4 wt% with catalytic pyrolysis using acid activated fire clay catalyst at 10 wt% of catalyst loading. The composition of liquid products obtained by thermal and catalytic pyrolysis was analyzed by gas chromatography-mass spectrometry and compounds identified for catalytic pyrolysis were mainly paraffins and olefins with carbon number range of C6–C18. The boiling point was found in the range of commercial fuels (gasoline, diesel) and the calorific value was calculated to be 42 MJ/kg.  相似文献   

14.
This paper analyzes and compares the findings of the characterization study of collected solid waste from households of three different socioeconomic groups in Lahore, Pakistan, over the four seasons, i.e. Spring (March–April, 2008), Summer (May–June, 2008), Monsoon (August–September, 2008) and Winter (December 2008 and January 2009). The generation rate of waste was 0.96 kg/cap/day for high-income, 0.73 kg/cap/day for middle and 0.67 kg/cap/day for low-income group. The average of total household solid waste (HSW) generation is 0.79 kg/cap/day (including 0.75 kg/cap/day for spring, 0.77 kg/cap/day for summer, 0.86 kg/cap/day for monsoon and 0.76 kg/cap/day. The breakdown for the major physical components of the waste shows that organic waste accounts for the largest proportion (67.46 %). The relations between waste generation rates by physical category and subcategory, in addition to factors such as socioeconomic groups (population density levels, household income and household size), seasonal variation, and daily variation (difference of HSW generation among days of a week) were also analyzed. Statistical analysis shows that there was no significant difference in overall waste generation among days of a week. A significant difference between the seasons for food waste, cardboard, PET, HDPE, other hazardous waste, battery cells, and dust and stone (p < 0.001) was found. The generation rates were found to be higher when compared to other developing countries.  相似文献   

15.
Sb release characteristics of blast furnace slag, mining waste rock and tailing sand were investigated in static immersion and dynamic leaching test. These three kinds of waste samples were collected from the antimony mine in Lengshuijiang, China, produced in mining smelting process. Effects of solid/liquid ratio, sample size and pH of leaching solution on Sb release characteristics were inspected based on the analysis of scanning electron microscope, pH and EC of leachate. The optimal parameters for Sb leaching of each sample were analyzed. For blast furnace slag and mining waste rock, Sb release contents increased along with the decline of solid/liquid ratio. The maximum accumulative release contents were 42.13, 34.26 mg/kg at the solid/liquid ratio of 1:20. While Sb release content for tailing sand decreased first and then increased with the reduction of solid/liquid ratio. When the solid/liquid ratio was 1:5, the accumulative Sb release content reached the most (24.30 mg/kg). Sb release content of mining waste rock increased with the drop of leaching solution pH, with the highest accumulative release content of 26.01 mg/kg at pH 2.0. Sb release contents of blast furnace slag and tailing sand showed positive correlation with the variation of leaching solution pH. The maximum accumulative release contents of these two samples were 215.91 and 147.83 mg/kg, respectively, when leaching solution pH was 7.0. In summary, Sb release capacity of the three samples in descending order was tailing sand, blast furnace slag and mining waste rock. pH and EC of the leachate in dynamic test varied independently with the initial pH of leaching solution while showing close relationship with mineral hydrolysis in the waste.  相似文献   

16.
In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C32NH55O16.  相似文献   

17.
Biochemical methane potentials (BMP) of two different substrates from macroalgae (MA) and market place wastes (MPW) were investigated using anaerobic granulated sludge from food industry with different ratios of substrate to inoculum (S/X). The substrates were used as MA only, MPW only, MA–MPW mixture, pretreated MA, and pretreated MA–MPW mixture. Research involved investigation of the effects of parameters such as temperature (35, 45, and 55 °C), substrate to inoculum ratio (S/X = 0.5, 2.0, 4.0, and 6.0 as g VSsubstrate/g VSinoculum), and the type of pretreatment (by microwave, thermal, and ultrasonic) on BMP. BMP assays were performed for all substrates. The highest cumulative biogas production (and BMP) were obtained for MA only at an S/X ratio of 4.0 g VS/g VS as 357 Lbiogas/kg VS (197 L CH4/kg VS) and 33 Lbiogas/kg VS (17 L CH4/kg VS), respectively, at 35 and 55 °C. For pretreated substrates, the highest cumulative biogas production and BMP were observed as 287 Lbiogas/kg VS and 146 L CH4/kg VS using pretreated macroalgae at 35 °C. Results suggested that MA only and MA–MPW mixtures are suitable substrates for biogas production. It is also concluded that any type of pretreatment has adverse effects on biogas and methane productions.  相似文献   

18.
A survey on solid waste generation and residents’ awareness was conducted in Da Nang city, Vietnam in 2010. We took samples from residents, hotels, restaurants, and city markets. Data reveals that each resident generates on average 0.71 kg/capita/day (3 kg/household/day). Regarding the composition, organic waste (food, flowers, leaves, grass) accounts for about 70 % of residents’ waste followed by plastics. Likewise, about 14 % of residents’ waste can be recycled. Furthermore, we find that middle income households in the suburbs have the largest waste generation with 4.9 kg/household/day. We consider that this finding is explained by their dedication to agricultural activities, such as planting fruit trees and vegetables, and gardening. Finally, we find that only about 60 % of interviewees have knowledge of how to segregate waste, however more than 90 % of them are willing to cooperate with the introduction of a waste segregation program in the city.  相似文献   

19.
A sample preparation method based on sintering, followed by analysis by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) for the simultaneous determination of chloride and bromide in diverse and mixed solid wastes, has been evaluated. Samples and reference materials of known composition were mixed with a sintering agent containing Na2CO3 and ZnO and placed in an oven at 560 °C for 1 h. After cooling, the residues were leached with water prior to a cation-exchange assisted clean-up. Alternatively, a simple microwave-assisted digestion using only nitric acid was applied for comparison. Thereafter the samples were prepared for quantitative analysis by ICP-SFMS. The sintering method was evaluated by analysis of certified reference materials (CRMs) and by comparison with US EPA Method 5050 and ion chromatography with good agreement. Median RSDs for the sintering method were determined to 10% for both chlorine and bromine, and median recovery to 96% and 97%, respectively. Limits of detection (LODs) were 200 mg/kg for chlorine and 20 mg/kg for bromine. It was concluded that the sintering method is suitable for chlorine and bromine determination in several matrices like sewage sludge, plastics, and edible waste, as well as for waste mixtures. The sintering method was also applied for determination of other elements present in anionic forms, such as sulfur, arsenic, selenium and iodine.  相似文献   

20.
Electrical electronics constitute a significant quantity of municipal solid wastes which are discarded after use in open dumpsites especially in the developing countries. The aim of this study was to characterise the material and chemical components, evaluate current management practices and investigate recovery of lead from battery electrodes (BEs) of waste rechargeable electric lamps (RLs). Twenty-six waste RLs of different models were sampled in Nigeria and characterised. Their BEs were analysed for Pb, Cr, Mn, Cu, Zn, Ni and Fe after acid digestion. Questionnaires were distributed to unselected respondents to assess usage and disposal of the lamps. Reaction of citric acid solutions with Pb in the presence of H2O2 was used for the recovery of Pb. 69 % of the respondents disposed their waste RLs in open dumpsites. The mean ± SD concentrations of Pb, Cr, Mn, Cu, Zn, Ni and Fe in the BEs were 600 ± 0.2 g/kg, 65.4 ± 40 mg/kg, 5.05 ± 4.0 mg/kg, 6.81 ± 5.0 mg/kg, 5.98 ± 3.0 mg/kg, 50.0 ± 30 mg/kg and 40.2 ± 35 mg/kg, respectively. The results show that the batteries are lead-acid batteries which require management. At the optimal conditions of S/L = 0.14, temperature = 20 °C and leaching time = 5 h, about 95 % Pb was recovered in form of lead citrate from the battery. High recovery of Pb is possible with simple and environment-friendly reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号