首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Application of Amberlite XAD-7 impregnated with morpholine dithiocarbamate (MDTC) for separation and preconcentration of trace amounts of lead, copper, cobalt, iron, nickel, cadmium and zinc and determination by ICP-AES has been described. The optimum experimental parameters, such as pH, sample flow rate, eluent and effect of matrix ions on the preconcentration were investigated. Simultaneous enrichment of the seven metals was accomplished. The t 1/2 values for sorption are 2.9, 3.3, 3.7, 3.6, 2.8, 4.1 and 2.8 respectively for Pb(II), Cu(II), Co(II), Fe(III), Ni(II), Cd(II) and Zn(II). The method was applied for the determination of trace metal ions in seawater and natural water samples. The results have been compared with extraction GFAAS method.  相似文献   

2.
Increased risk of ill-health and diseases has been associated with employment in the ferro-alloy factory. Since measurement of transition metals in human blood and hair along with respective exposure rates, provides a means of assessing individual risk, it has been the most important part of the study. In the study majority of the elements in the transition series, such as, vanadium (V), chromium (Cr), iron (Fe), manganese (Mn), cobalt, (Co) nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo) and cadmium (Cd) were considered which are randomly emitted from the source, that is, manganese ore (used during ferro-alloy manufacturing process). The commonly available transition, metals, observed in biological samples of ferro-alloy workers, were found to be Fe, Zn, Co, Ni, Cu, Cr, Cd, V Mn and Mo in blood, while in hair, Mn, Fe, Zn, Co, Ni, Cu, Cr, Cd, V and Mo were present in decreasing order Surveillance of bio-concentration of these metals in workers, exposed to close proximity of the coke-ovens and smelting furnaces, revealed that the workers were prone to several physical disorders.  相似文献   

3.
Natural and anthropogenic metal inputs to soils in urban Uppsala, Sweden   总被引:1,自引:0,他引:1  
Urban soils are complex systems due to human activities that disturb the natural development of the soil horizons and add hazardous elements. Remediation projects are common in urban areas and guideline values are set to represent a desired level of elements. However, the natural content of trace elements may not always equal the desired levels. In this study, an attempt is made to distinguish between metals that are present in the soil due to natural origins and to anthropogenic origins. Seventy-five soil samples of the 0–5, 5–10 and 10–20 cm layers were collected from 25 sites in urban areas of Uppsala City and analysed for aluminium (Al), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), tungsten (W) and zinc (Zn) using aqua regia for digestion. In order to highlight elements of geological origin, the results were compared to a similar study carried out in Gothenburg City, which has about three times as many inhabitants as Uppsala and has a more industrial history. A cluster analysis was also performed to distinguish between elements of natural and anthropogenic origin. Contents of As, Al, Fe, Cr, Ni, Mn and W in Uppsala were concluded to be of mainly geological origin, while contents of Cd, Cu, Zn, Pb and Hg seemed to have been impacted upon by mainly urban activities.  相似文献   

4.
The concentrations of cadmium, chromium, copper, lead, zinc, manganese, iron, cobalt, and nickel in some brands of canned beef in Nigerian markets were determined by atomic absorption spectrophotometry. The mean concentration ranges for these metals in mg?kg?1 were 0.02–0.37 for Cd, <0.04–0.75 for Cr, 1.1–2.4 for Cu, <0.001–1.5 for Pb, 1.1–8.0 for Zn, <0.04–0.57 for Mn, 13.8–28.8 for Fe, 0.05–0.26 for Co, and 0.8–5.9 for Ni. The estimated dietary intake of metals from these products did not indicate any risk since the values were far below the permissible dietary intakes.  相似文献   

5.
A simple, sensitive, accurate, and selective method for determination of ultratrace levels of Co is modified. The method is based on preconcentration of Co on the PAR-loaded Amberlite XAD-7 at pH 2.0 ± 0.2 for contact time as low as 45 min. The adsorbed cobalt was eluted with concentrated nitric acid and measured by flame atomic absorption spectrometry. Recoveries up to 90% were achieved. The optimized preconcentration method was applied to cobalt determination in natural mineral waters. The detection limit was found to be 0.1 ng mL−1. The relative standard deviation was found to be 13% for 600 mL of 2.0 ng mL−1, for 10 replicate preconcentration procedures. Cobalt concentrations in the studied water samples were found to be in the ranges of 0.5–3.5 ng mL−1.  相似文献   

6.
A simple, sensitive column solid-phase extraction procedure for separation and preconcentration of Cu(II), Ni(II), Co(II), and Cd(II) in spiked and natural water samples using 2,3-dihydroxynaphthalene-functionalized Amberlite XAD-4 (XAD-4-DHN) chelating resin prior to their determination by inductively coupled plasma atomic emission spectrometry was discussed. The optimum experimental parameters such as pH, volume of sample and eluent, flow-rates of uptake and stripping, and sorption capacity of the chelating resin, were evaluated. The effect of the electrolytes and the cations on the preconcentration of metal ions was also investigated. The chelating resin could be reused for more than 20 cycles of sorption–desorption without any significant change (<1.0%). Recoveries obtained from this method range from 96 to 102% with R.S.D of 2.50 (n = 4). The detection limits for Cu(II), Ni(II), Co(II), and Cd(II) were found to be 1.9, 0.9, 1.2 µg, and 1.4 µg L?1, respectively. The proposed method was applied for the determination of Cu(II), Ni(II), Co(II), and Cd(II) in spiked, tap water, and river water samples.  相似文献   

7.
Water-dissolved oxygen was supplied into anaerobic aquifer , which oxidized Fe(II), Mn(II) and trivalent arsenic and changed them into undissolved solid matter through hydrolysis, precipitation, co-precipitation and adsorption processes. The experiment was carried out on the column imitated a bore core of anaerobic aquifer with water phase containing Fe(II), Mn(II), As(III) concentration of 45.12 mg/L, 14.52 mg/L, 219.4 μg/L, respectively and other ions similarly composition in groundwater. After 6 days of air supply, concentration of iron reduced to 0.38 mg/L, manganese to 0.4 mg/L, arsenic to 9.8 μg/L (equivalent 99.16% of iron, 97.25% of manganese and 95.53% of arsenic fixed), and for other ions, the concentration changed almost according to general principles. Ion phosphate and silicate strongly influenced on arsenic removal but supported iron and manganese precipitation from water phase. Based on the experimental results, new model of groundwater exploitation was proposed.  相似文献   

8.
A method utilizing size exclusion liquid chromatography (SEC) was developed to separate and quantify large molecular cobalt (Co) (e.g., albumin-Co) from cyanocobalamin (vitamin B12) and small molecular Co (e.g., glutathione-Co and free Co) in human serum. Highly selective and sensitive detection using inductively coupled plasma–mass spectrometry was coupled with SEC to provide a method with reliable accuracy, precision, recoveries, stability, and a detection limit of 0.037 μg/L in undiluted serum. Other divalent metal cations known to compete with Co(II) for serum albumin-binding sites (such as iron, zinc, manganese, cadmium, copper, nickel, and lead) did not significantly alter Co(II) quantification. Co–protein binding capacity determination of individual serum samples indicated that addition of 2500 μg Co/L to undiluted human serum resulted in approximately 90% distribution to the large molecular Co peak, consistent with Co binding to high-affinity divalent metal binding sites on albumin. Since serum albumin binding partially sequesters biologically active Co(II) ions, this method provides an important tool for better understanding the kinetics and toxicology of Co compounds. Thus, the proposed method might play an important role in establishing Co dose–response relationships that affect the equilibrium concentrations of free ionic Co(II).  相似文献   

9.
Poly(hydroxamic acid)-poly(amidoxime) chelating ligands were synthesized from poly(methyl acrylate-co-acrylonitrile) grafted acacia cellulose for removing toxic metal ions from industrial wastewaters. These ligands showed higher adsorption capacity to copper (2.80 mmol?g−1) at pH 6. In addition, sorption capacities to other metal ions such as iron, zinc, chromium, and nickel were also found high at pH 6. The metal ions sorption rate (t1/2) was very fast. The rate of adsorption of copper, iron, zinc, chromium, nickel, cobalt, cadmium and lead were 4, 5, 7, 5, 5, 8, 9 and 11 min, respectively. Therefore, these ligands have an advantage to the metal ions removal using the column technique. We have successfully investigated the known concentration of metal ions using various parameters, which is essential for designing a fixed bed column with ligands. The wastewater from electroplating plants used in this study, having chromium, zinc, nickel, copper and iron, etc. For chromium wastewater, ICP analysis showed that the Cr removal was 99.8% and other metal ions such as Cu, Ni, Fe, Zn, Cd, Pb, Co and Mn removal were 94.7%, 99.2%, 99.9%, 99.9%, 99.5%, 99.9%, 95.6% and 97.6%, respectively. In case of cyanide wastewater, the metal removal, especially Ni and Zn removal were 96.5 and 95.2% at higher initial concentration. For acid/alkali wastewater, metal ions removing for Cd, Cr and Fe were 99.2%, 99.5% and 99.9%, respectively. Overall, these ligands are useful for metal removal by column method from industrial wastewater especially plating wastewater.  相似文献   

10.
The concentrations of 11 heavy metals (Ag, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn) were measured in the tissues (digestive gland, branchial hearts, gills, digestive tract, kidney, genital tract, muscle, skin, shell) of the two cephalopods Eledone cirrhosa (d'Orb.) and Sepia officinalis (L.) collected from the French coast of the English Channel in October 1987. The tissues of both species displayed a similar pattern of heavy-metal accumulation: the digestive gland, branchial hearts and kidney were the major sites of concentration for all 11 metals; the digestive gland accumulated silver, cadmium, cobalt, copper, iron, lead and zinc, the branchial hearts high concentrations of copper, nickel and vanadium, and the kidney high concentrations of manganese, nickel and lead. The digestive gland, which constituted 6 to 10% of the whole-animal tissue, contained >80% of the total body burden of Ag, Cd and Co and from 40 to 80% of the total body burden of the other metals. The ratios between heavy metal concentrations in the digestive gland and those in the muscle separated the elements into three groups, those with a ratio 10 (Cr, Mn, Ni, Pb, V, Zn), those with a ratio >10 to <50 (Co, Cu, Fe), and those with a ratio 50 (Ag, Cd). The digestive gland of cephalopods (carnivorous molluscs whose age can be easily calculated with great accuracy) would seem to constitute a good potential indicator of heavy metal concentrations in the marine environment.  相似文献   

11.
Cobalt and copper recovery from aqueous Co(II) and Cu(II) is one critical step for cobalt and copper wastewaters treatment. Previous tests have primarily examined Cu(II) and Co(II) removal in microbial electrolysis cells (MECs) with abiotic cathodes and driven by microbial fuel cell (MFCs). However, Cu(II) and Co(II) removal rates were still slow. Here we report MECs with biocathodes and driven by MFCs where enhanced removal rates of 6.0±0.2 mg?L−1?h−1 for Cu(II) at an initial concentration of 50 mg?L−1 and 5.3±0.4 mg?L−1 h−1 for Co(II) at an initial 40 mg?L−1 were achieved, 1.7 times and 3.3 times as high as those in MECs with abiotic cathodes and driven by MFCs. Species of Cu(II) was reduced to pure copper on the cathodes of MFCs whereas Co(II) was removed associated with microorganisms on the cathodes of the connected MECs. Higher Cu(II) concentrations and smaller working volumes in the cathode chambers of MFCs further improved removal rates of Cu(II) (115.7 mg?L−1?h−1) and Co(II) (6.4 mg?L−1?h−1) with concomitantly achieving hydrogen generation (0.05±0.00 mol?mol−1 COD). Phylogenetic analysis on the biocathodes indicates Proteobacteria dominantly accounted for 67.9% of the total reads, followed by Firmicutes (14.0%), Bacteroidetes (6.1%), Tenericutes (2.5%), Lentisphaerae (1.4%), and Synergistetes (1.0%). This study provides a beneficial attempt to achieve simultaneous enhanced Cu(II) and Co(II) removal, and efficient Cu(II) and Co(II) wastewaters treatment without any external energy consumption.  相似文献   

12.
Manganese oxide coatings on sand particles within filtration beds from a water treatment plant in Grampian, Scotland were examined to determine their control on metal mobility. This study first sought to characterise the oxides, notably their mineralogy and metal content, to provide a foundation for studies on the adsorption of dissolved metals from the treated water by the oxides. The oxides were examined by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and analysed by flame atomic absorption spectrophotometry (AAS). These techniques showed the oxide coatings were amorphous but uniformly distributed over each sand grain. The oxides were selectively removed from the sand grains prior to analysis by AAS using a hydroxylamine hydrochloride selective leaching method. The compositional range of the extracts was 100–150 mg L−1 Mn; 30–55 mg L−1 Fe; 17–56 mg L−1 Ca; 4.6–7.0 mg L−1 Ni; 4.6–6.8 mg L−1 Zn and 1.3–5.7 mg L−1 Mg. When these results are expressed as mg of metal per mg of Mn, the metal content of the oxides is remarkably uniform: 0.25–0.37 mg Fe; 0.14–0.35 mg Ca; 0.035–0.042 mg Ni; 0.035–0.040 mg Zn; 0.01–0.04 mg Mg. The greatest metal concentrations were consistently found in the upper 3 cm of the filtration bed, and these decrease with increasing depth. After the beds are cleaned a more uniform distribution of metals occurs throughout the bed. The metals taken up by the manganese coating are retained over a wide pH range with the exception of Ca and Mg which desorb to a significant extent. The percentage of calcium and magnesium lost from the coating ranges from 30–94%, the amount being dependent on the final pH of the solution. The presence of manganese oxide in the filtration beds appears to be advantageous in terms of removal of transition metals from the treated water.  相似文献   

13.
Rawal Lake Reservoir is renowned for its ecological significance and is the sole source of drinking water of the third largest city of Pakistan. However, fish kill in recent years and anthropogenic impacts from human-related activities in its catchment area have resulted in deterioration of its surface water quality. This study aims to characterize spatial and temporal variations in surface water quality, identify contaminant sources, and compare their levels with quality guidelines. Surface water samples were collected from 10 sites and analyzed for 27 physicochemical parameters for a period of 2 years on a seasonal basis. Concentration of metals in surface water in pre-monsoon were in the order: Fe > Mg > Ca > Mn > Zn > Ni > Cr > Cu > Co > Pb, whereas in post-monsoon, the order of elemental concentrations was: Ca > Mg > Na > Fe > K > Zn > Cr > Li > Pb > Co > Ni > Cu > Mn > Cd. Metals (Ni, Fe, Zn, and Ca), pH, electrical conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), and nutrients (PO43−, NO3–N, and SO42−) were measured higher in pre-monsoon, whereas concentration of Cu, Mn, Cr, Co, Pb, Cd, K, Na, Mg, Li, Cl, and NH4–N were recorded higher in post-monsoon. Results highlighted serious metal pollution of surface water. Mean concentration of Zn, Cd, Ni, Cu, Fe, Cr, and Pb in both seasons and Mn in post-monsoon were well above the permissible level of surface water quality criteria. Results stress the dire need to reduce heavy-metal input into the lake basin and suggest that heavy-metal contamination should be considered as an integral part of future planning and management strategies for restoration of water quality of the lake reservoir.  相似文献   

14.
To understand the features and leaching characteristics of copper (Cu) scrap smelting dust and its potential risk to environment and humans, three types of smelting dust were sampled and investigated. The dust samples were collected from the dust captured by cyclone collector, panel cooler, and bag house in a typical Cu scrap smelting process of a factory in Guangxi of China. Zinc (Zn), Cu and lead (Pb) were the main elements of the samples of cyclone collector dust (CCD), panel cooler dust (PCD), and bag house dust (BHD). There were less arsenic (As), Pb and Cu in CCD than PCD and BHD, and PCD contained more manganese (Mn), nickel (Ni), and iron (Fe) than BHD. The particle shapes of BHD appeared more regular than CCD and PCD, and energy dispersive X-ray spectroscopy analysis illustrated the compositions of selected surface areas of three samples. The size of particles ranged from 0.011 to 33.11 μm in CCD, from less than 1 μm to several mm in PCD, and from 0.832 to 363.078 μm in BHD. The main elements in leachate were Zn and Mn from CCD, Zn, cadmium (Cd) and Pb from PCD, Zn, Mn and Cd from BHD. The leaching toxicity risk of Cd, Mn, and Zn of PCD and BHD was higher than CCD.  相似文献   

15.
Abstract

Analyses were made of heavy metals, manganese, nickel, copper, zinc and lead in water samples and soft body, shell and different tissues (gills, digestive glands, mantle and viscera) of the Unionid mussel, Lamellidens marginalis collected from two tributaries of the Cauvery river. Water samples from Station I contained higher concentrations of the metals than those from Station II. the concentration of metals in water at both stations were in the descending order: Mn > Zn > Pb > Ni > Cu. However, the concentrations of metals in the soft body were in the descending order: Zn > Mn > Pb > Ni > Cu at both stations in all size groups of mussels tested. the concentration of zinc maintained a linear relationship with the size of the mussels, but manganese showed a reverse trend. Small size (4-5 cm) mussels accumulated more manganese (105.5 μg.g?1 dry wt.) than larger ones (7-8 cm; 6.5 μg.g?1 dry wt.). Both young and old is accumulate the same level of lead, copper and nickel in the soft body. the order of concentrations of metals (Mn, Pb, Zn, Ni and Cu) in the shell of mussels from both stations coincided with the order of concentrations of background water except for lead. the accumulation of lead was higher in shell (30.4-36.2 μg.g?1 dry wt.) than in soft body (6.4-12.0 μg.g?1 dry wt.). the pattern of concentration of metals in the various tissues reveal that the digestive glands have greater ability than other tissues to concentrate most metals under study. the concentration factors for soft body, shell and different tissues are presented. the advantages in using the common mussel for biomonitoring of contaminants in water is also discussed.  相似文献   

16.
An evaluation of ~250 samples of groundwater in the Amman Zarqa Basin for selenium along with other major and trace elements showed that concentrations of Se ranged between 0.09 and 742 μg/L, with an average value of about 24 μg/L. Selenium concentrations exceeded the recommended threshold for drinking water of the World Health Organization (WHO; 10 μ/L of Se) in 114 samples, with greater than 50 μg/L (quantity equivalent to the Jordanian standard of the allowed concentration of the element in water) of Se in nine cases. The average concentrations of Se in the lower, middle, and upper aquifers of the basin were 3.41, 32.99, and 9.19 μg/L, respectively. Based on the correlation with geologic formations and the statistical analysis of major/minor constituents and Piper tri-linear diagrams, we suggest that carbonate/phosphate dissolution, oxidation–reduction processes, and fertilizers/irrigation return flow are, together, the primary factors affecting the chemistry of the groundwater. Factor analysis helped to define the relative role of limestone-dolomitic dissolution in the aquifers (calcium, magnesium, and bicarbonate), agricultural activities (sulfate, nitrates, phosphorus, and potassium), oxidation–reduction factor (Eh, Fe, Mn, Cu, Zn, and Se), and anthropogenic (industrial) factor (EC, Fe, Cr, Co, Zn, and As). The high variability in Se concentrations might be related to the possibility of a multi-source origin of Se in the area.  相似文献   

17.
The distribution and enrichment of selected trace metals (Cd, Cr, Cu, Ni, Pb, Sn, Zn) in benthic sediments of the Southport Broadwater, a semi-enclosed coastal body of water adjacent to the Gold Coast city, south-eastern Queensland, Australia, was studied with the objective of assessing the extent and degree of sediment contamination. Sediment samples from the 0–10 cm and 10–20 cm depth intervals of 32 sites within the Southport Broadwater and surrounding residential canals were analysed for particle size distribution, pH, organic C and ‘near-total’ major (Al, Ca, Fe, Mn) and trace (Cd, Cr, Cu, Ni, Pb, Sn, Zn) metal contents. Sediment contamination for each trace metal was assessed by (1) comparison with Australian sediment quality guidelines, (2) calculation of the index of geoaccumulation based on regional background values, and (3) geochemical normalisation against Al (i.e. the abundance of alumino-silicate clay minerals). Based on this approach, the results indicate that submerged sediments in the study area are not presently enriched with Cd, Cr or Ni, with the spatial distribution of these metals being very well explained by the abundance of alumino-silicate clay minerals. However, several sites were strongly enriched with Cu, Pb, Sn and Zn, arising from sources related to either urban runoff or vessel maintenance activities. The study indicates that several varying approaches are needed for a satisfactory assessment of contaminant enrichment in estuarine sediments.  相似文献   

18.
Concentrations of the nutrients (TN and TP), phosphorus fractions and heavy metals (Co, Cr, Cu, Mn, Ni, Pb, Sr, Ti, V, Zn and Hg) in 40 surface sediment samples collected from Taihu Lake, a eutrophic shallow lake in China, were determined. The results showed that the northwest region of the lake possessed higher concentrations of TN and TP, as well as the similar spatial distribution trend in the water column. This should be related to excessive anthropogenic input from industrial effluents and domestic sewage in surrounding areas. Similarly, the concentrations of P fractions exhibited significant regularity. In addition, except for Sr showing low concentration, the rest of the heavy metals in the surface sediments had two- to four-folds of magnitude of the concentrations compared with the reference values in earth's crust. In the past decade, concentrations of heavy metals had undergone different levels of variations. Principal component analysis (PCA) and enrichment factors (EFs) of the compositional data aiming at heavy metals showed that Taihu Lake was slightly exposing to heavy metal contamination except Sr. High concentrations of heavy metals were ascribed to the discharge of untreated and partially treated industrial waste water via rivers. Co, Cr, Cu, Mn, Ni, Pb, V and Zn positively correlated with each other (R = 0.78–0.92), that indicated they had analogous sources and/or kindred geochemistry characteristics. Differing from nutrients, randomness in the space indicated that heavy metals had a complex distribution.  相似文献   

19.
The objective of this investigation was to examine the heavy metal status of the lower basin of Kainji dam (used for hydroelectricity generation), which includes Lakes Kainji/Jebba, Nigeria, and the potential for human exposure to heavy metals from eating fish caught in the lakes. Water, sediments and fish were sampled from the lakes and evaluated for As, Cu, Co, Cr, Fe, Hg, Mn, Ni, Pb, Sb, Ti, V and Zn using the EDXRF technique. Fe and Mn were found to be present at high mean concentrations in the water (13 and 9 μg L-1), sediment (7092 and 376 μg g-1) and fish (11.4 and 4.6 μg g-1) samples. Sb (3.2 μg L-1), Ti (4.1 μg L-1), Cr (2.2 μg L-1), Co (1.2 μg L-1), Cu (1.3 μg L-1) and Pb (1.2 μg L-1) in the water samples and Sb (29 μg g-1), Ti (27 μg g-1), V (27 μg g-1), Cr (27 μg g-1), Co (40 μg g-1), Ni (33 μg g-1), Cu (25 μg g-1), Zn (59 μg g-1) and Pb (19 μg g-1) in the sediment samples were found to be of medium mean concentrations. The other metals were present at trace levels (<1 μg), including As and Hg in the fish and sediment samples. There was an appreciable increase in␣metal concentrations in going from the water to the sediment samples. The probable source of the pollutants is anthropogenic, arising from agricultural activities, corrosion/abrasion of the ferrous steel material and additives in the lubricants and insulation used for auxiliary services on the turbine floor of the dam constructed on the lakes. However, natural geological sourcing from the underlying lake rock cannot be totally ignored, particularly the high levels of Fe and Mn in the sediment samples. The potential risk for human exposure to these metals emanates from the fish caught in the lakes and subsequently consumed, as there are already significant levels of these metals in the two fish species analysed, Tilapia (Oreochromis niloticus) and Chrysicthys (Chrysicthys auratus).  相似文献   

20.
Nickel (Ni) and copper (Cu) are the most prevalent metals found in the Greater Sudbury Region ecosystems. The main objectives of this study are to (1) assess silver maple (Acer saccharinum) tolerance to different doses of Ni and (2) determine the translocation pattern of metals in A. sacharinum. This study revealed that A. sacharinum is highly tolerant to high doses of NI (1600 and 9200?mg/kg). Growth chamber screening trials revealed that Ni is stored in roots and does not translocate to other plant parts. Analysis of samples from A. sacharinum growing for >30 years in soil contaminated with metals also showed that the levels of iron (Fe), manganese (Mn), Ni, and zinc (Zn) were significantly higher in roots compared with soils and aerial parts. On the other hand, the amount of Cu was higher in soil compared with roots and other plant parts. In fact, the bioaccumulation factors (BFs) were 0.29, 2.00, 3.6, 1.9, and 4.0 for Cu, Fe, Mn, Ni, and Zn, respectively. The translocation from roots to aerial parts showed an insignificant level of movement of Cu, Fe, and Ni. Hence, A. saccharinum is classified as excluder for Fe, Mn, Ni, and Zn, and avoider for Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号