首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
针对采用一体式全程自养脱氮(CANON)工艺的活性污泥反应器和移动床生物膜反应器(MBBR)进行了超过400 d的考察,并对两者的运行特征进行了比较。结果显示,活性污泥CANON反应器经过长期运行,内部的污泥絮体首先聚集形成了生物膜,生物膜经刮擦脱落后可进一步形成颗粒污泥;转化形成的颗粒污泥系统对氨氮和总氮的平均去除率分别为97.6%和81.8%。在MBBR中,系统对氨氮和总氮的去除受曝气的制约,平均值分别为87.0%和72.9%;另外由于生物膜的保护,长期运行后亚硝酸盐氧化菌(NOB)将难以被抑制。反应器微生物群落组成结构显示,生物膜中的氨氧化菌(AOB)、NOB和厌氧氨氧化菌(AnAOB)相对丰度分别为5.66%、2.99%和21.10%,而颗粒污泥中这3种功能菌的相对丰度分别为7.62%、0.34%和6.85%。  相似文献   

2.
针对目前生物工艺难以解决垃圾渗滤液深度脱氮的问题,探究了短程硝化反硝化-厌氧氨氧化-硫自养反硝化(两级自养)工艺处理高氨氮、低C/N比垃圾渗滤液的脱氮效果。结果表明,当进水垃圾渗滤液中氨氮平均浓度为2 560 mg·L~(-1),COD值为4 000~5 000 mg·L~(-1)时,经过短程硝化反硝化-厌氧氨氧化处理后,总氮去除负荷可达1.19 kg·(m~3·d)~(-1)、总氮去除率可达93.1%(出水TN=176.3 mg·L~(-1))、COD去除率可达52.2%。但是,厌氧氨氧化反应器出水中NO_x~--N浓度为154.5 mg·L~(-1),仍未达到我国生活垃圾填埋场垃圾渗滤液处理排放标准(TN≤40 mg·L~(-1))。在厌氧氨氧化反应器之后串联硫自养反硝化,整体工艺最终出水NH_4~+-N、NO_2~--N、NO_3~--N平均浓度分别为1.9、0.6、9.7 mg·L~(-1),TN≤15 mg·L~(-1),进水总氮去除率为99.5%。在短程硝化反硝化-厌氧氨氧化-硫自养反硝化两级自养深度脱氮反应系统中实现了垃圾渗滤液深度脱氮。  相似文献   

3.
采用连续进水(feed-batch)方式的SBR在高氨氮负荷(1 kg·(m~3·d)~(-1))和双重抑制下实现了亚硝化系统的启动及稳定运行。采用荧光原位杂交技术(FISH)对活性污泥中氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)种群及数量变化进行测定。结果表明在温度(35±1)℃,进水氨氮浓度为1000mg·L~(-1)的条件下对NOB的抑制由游离亚硝酸(FNA)和DO的双重抑制转变为游离氨(FA)和DO的双重抑制,污泥亚硝酸盐氧化速率由28.16mg·(g·h)(以MLVSS计)降到0.3 mg·(g·h)~(-1)(以MLVSS计)以下,成功实现了高氨氮废水的稳定亚硝化。反应器出水NO_2~--N平均浓度为466.45 mg·L~(-1),NO_2~--N/NH_4~+-N接近1,NO_3~--N浓度低于20 mg·L~(-1),満足厌氧氨氧化(ANAMM0X)的进水基质要求。FISH结果表明,富集培养阶段AOB、NOB的优势种属由亚硝化单胞菌属(Nitrosomonas)及硝化螺旋菌属(Nitrospira)转变为Nitrosomonas及硝化杆菌属(Nitrobacter),抑制过程中NOB逐渐被淘汰最终硝化菌以Nitrosomonas为主,从微生物学角度佐证了亚硝化的稳定运行。  相似文献   

4.
厌氧氨氧化菌接种污泥的选择培养过程研究   总被引:9,自引:2,他引:9  
厌氧氨氧化菌的2种不同接种污泥培养实验表明,厌氧消化污泥和好氧硝化污泥均可成功启动厌氧氨氧化过程.接种厌氧消化污泥比好氧硝化污泥培养的厌氧氨氧化菌启动快,但后者去除效果较好.接种好氧硝化污泥的反应器的厌氧氨氧化速率随着氨氮基质进水浓度的增加呈线性增加.进水氨氮浓度为280 mg/L时的氨氮平均去除率达91%;而接种厌氧消化污泥的相应氨氮平均去除率仅为52%.厌氧氨氧化过程以接种好氧硝化污泥来启动为宜.  相似文献   

5.
针对低C/N城市污水脱氮除磷因碳源不足存在能耗、药耗高以及脱氮除磷效率低等问题,开发一体式短程硝化/厌氧氨氧化(PN/A)耦合强化生物除磷工艺(EBPR),以降低碳源消耗和能耗、提高脱氮除磷效率,从而实现高效低耗减污降碳。通过构建悬浮污泥和生物膜共存的混合系统,采用厌氧-好氧运行模式以及间歇曝气,考察短程硝化/厌氧氨氧化与强化生物除磷过程的耦合效果。结果表明,反应器能长期稳定运行,出水总无机氮(TIN)质量浓度稳定低于4 mg·L-1,溶解态磷(DP)质量浓度约0.2 mg·L-1,TIN平均去除率大于90%,DP的平均去除率大于85%,平均脱氮负荷为53 mg·(g·d)-1,强化间歇曝气能够在系统内实现NOB抑制,亚硝氮积累率可达60%以上,甚至100%。控制悬浮污泥好氧污泥龄为3.5 d,NOB由悬浮污泥向填料转移。由于生物膜传质受限,系统的亚硝氮积累率并未受到影响。该系统内厌氧氨氧化活性提高了5倍,厌氧氨氧化菌以Candidatus Brocadia为主,相对丰度为1.1%,较主流条件下提高了2.75倍。本研究结...  相似文献   

6.
通过连续流实验研究了低浓度乙酸盐诱导下厌氧氨氧化颗粒污泥与异养反硝化菌的耦合脱氮性能,同时采用批试实验考察耦合系统中的氮素转化及去除途径。结果表明:采用低浓度乙酸盐对厌氧氨氧化颗粒污泥进行驯化,可以实现厌氧氨氧化与异养反硝化的高效耦合脱氮。系统在稳定时期,进水NH_4~+-N为30~40 mg·L~(-1)、NO_2~--N为45~55 mg·L~(-1)、CH_3COONa为60~80 mg·L~(-1),NH_4~+-N、NO_2~--N和TN的去除率分别为93.84%、94.62%和86.46%。耦合系统中的颗粒污泥同时存在厌氧氨氧化特性、硝化特性和反硝化特性。颗粒污泥表现出良好的厌氧氨氧化特性,总氮去除速率为12.46 mg·(g MLSS·h)~(-1)。系统中存在的硝化细菌可以消耗进水中的溶解氧从而缓解溶解氧对ANAMMOX菌的抑制,其中AOB活性高于NOB活性。系统中颗粒污泥对硝氮的反硝化作用强于对亚硝氮的反硝化作用,亚硝氮反硝化和硝氮反硝化的降解速率分别为1.89和3.59 mg·(g MLSS·h)~(-1)。当亚硝氮和硝氮同时存在时,反硝化菌优先将硝氮还原成亚硝氮。  相似文献   

7.
针对垃圾填埋场渗滤液生物脱氮高耗能的问题,通过对A/O/N工艺处理垃圾渗滤液进行短程硝化反硝化调试,对溶解氧(DO)、污泥浓度(MLSS)、污泥龄(SRT)、混合液回流比、pH、碱度进行定性定量分析,研究了不同条件下垃圾渗滤液生物处理阶段COD、氨氮及总氮去除效果,探讨了影响亚硝酸盐氮积累的因素。结果表明,好氧池低溶解氧能成功启动短程硝化,垃圾渗滤液稳定实现短程硝化反硝化脱氮。运行条件为:O反应器DO浓度0.5~0.8 mg·L~(-1),N反应器DO浓度1.5~2.2 mg·L~(-1),MLSS 3 500~4 500 mg·L~(-1),污泥龄9~13 d,混合液回流比1 100%,N反应器pH 7.6~8.2,N反应器碱度1.1 g·L~(-1)。短程硝化调试后,硝化阶段亚硝化率稳定在85%以上,COD、氨氮及总氮去除率分别达95%、98.6%、94.2%以上,节省30%碳源量和20%曝气量。  相似文献   

8.
利用硫化物对亚硝酸盐氧化菌的抑制作用,快速建立短程硝化。通过改变供氧条件,硫化物作为电子供体推动自养反硝化,实现同一序批反应器一体化脱氮。采用序批反应器SBR处理模拟市政污水,在DO浓度(1.5±0.5)mg·L~(-1),硫化物浓度50 mg·L~(-1),温度25℃,水力停留时间12 h的条件下,共运行90 d,控制反应器厌氧低氧时间,达到90%以上的总氮去除率。同时研究了硫化物对短程硝化的抑制作用、最适宜运行p H条件、污泥颗粒大小变化、污泥产生量等。硫化物抑制亚硝酸盐氧化菌推动短程硝化反硝化生物脱氮技术有着反应条件可控性高、短程硝化建立时间短、脱氮效果好等优点,适用于低碳氮比的市政污水处理。  相似文献   

9.
以厌氧/缺氧/好氧和生物接触氧化反应器(AAO-BCO)组成的双污泥系统为研究对象,研究了三级串联式生物接触氧化反应器(N1、N2、N3)中有机物浓度对比耗氧速率(SOUR)的影响,同时对比了各级处理单元的硝化特性。实验结果表明,N1、N2、N3分别在有机物浓度低于40、60和40 mg·L~(-1)时,比耗氧速率随有机物浓度的升高而升高。根据比耗氧速率粗略估计了氨氧化细菌和亚硝酸盐氧化菌在各级中的百分比,其中氨氧化细菌的百分比分别为43.47%、54.94%和63.83%,而亚硝酸盐氧化菌的百分比分别为11.65%、21.87%和18.23%。由比耗氧速率计算得到氨氮比氧化速率和亚硝酸盐氮比氧化速率,其最高值分别为实际污水处理厂的1.9倍和1.2倍,生物接触氧化反应器中氨氧化细菌、亚硝酸盐氧化菌菌群更密集,硝化性能更优,且存在明显的亚硝酸盐累积现象(亚硝酸盐浓度为1.52~3.65 mg·L~(-1),亚硝态氮积累率最高可达25%)。  相似文献   

10.
有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响   总被引:1,自引:0,他引:1  
养殖沉积物中反硝化作用对于缓解氮污染有重要的作用,沉积物中的反硝化和厌氧氨氧化菌可将化合态氮转变为氮气,从而有效降低污染,有机碳在该过程中有着重要的作用。为了解有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响,采取理化分析和分子生物学分析等方法,以养殖池塘沉积物为基质、人工配水为营养液,添加不同浓度的淀粉,分析120 h内底物亚硝氮(NO_2~--N)、硝氮(NO_3~--N)、氨氮(NH_4~+-N)和TOC浓度,并对反硝化、厌氧氨氧化菌群丰度变化和反硝化菌多样性进行分析。结果表明:淀粉浓度在150 mg·L~(-1)时,NO_2~--N和NO_3~--N的去除率最高,分别达到98.90%和99.86%;NH_4~+-N去除率在淀粉浓度为50 mg·L~(-1)时最高,为35.98%。随着淀粉浓度的增加,反硝化菌的丰度明显增加,但有机碳对厌氧氨氧化菌群具有抑制作用。当淀粉浓度为150 mg·L~(-1)时,反硝化菌的丰度最大、多样性水平最高、物种数目最大,反硝化细菌优势菌属为未分类的变形菌属和β-变形菌属。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号