首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 375 毫秒
1.
何哲祥  李雷 《环境工程》2021,39(3):111-119
针对现有大气污染物浓度预测模型存在预测精度不高、污染物种类单一等不足的问题,通过小波分解将高维大气污染物数据转换为低维数据,再对分解序列建立长短期记忆网络(LSTM)预测模型,最后通过小波重构将分解序列重构为污染物时间序列,建立了1种基于小波变换(WT)的LSTM大气污染物预测模型(WT-LSTM),用以预测目标区域内的次日平均ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(O3)。采用长沙市2015—2018年10处国控站点的数据进行验证,结果表明:相对于LSTM、多元线性回归(MLR)和基于WT的WT-MLR模型,WT-LSTM的均方根误差和绝对平均误差均下降了50%,其对PM2.5、PM10、SO2、NO2和O3的污染等级预测准确率均在80%以上。  相似文献   

2.
为进一步提高PM2.5浓度预测的精度,基于XGBoost和LSTM进行改进得到变权组合模型XGBoost-LSTM(Variable).过对预测因子进行相关性分析,得到其它大气污染物和气象因素对PM2.5浓度的影响,确定最优PM2.5浓度预测因子,再将预处理后数据集输入LSTM模型和XGBoost模型分别进行预测,采用基于残差改进的自适应变权组合方法得到最终预测结果.结果表明,污染物变量的相对重要性高于气象因子变量,其中当前PM2.5和CO浓度的相对重要性较高,而平均风速和相对湿度重要性较低.XGBoost-LSTM(Variable)模型的RMSE、MAE和MAPE值为1.75、1.12和6.06,优于LSTM、XGBoost、SVR、XGBoost-LSTM(Equal)和XGBoost-LSTM(Residual)模型.分季节预测结果表明,XGBoost-LSTM(Variable)模型在春季预测精度最好,而夏季预测精度较差.模型预测精度高的原因在于其不仅考虑了数据的时间序列特征,又兼顾了数据的非线性特征.  相似文献   

3.
董红召  廖世凯  杨强  应方 《中国环境科学》2022,42(10):4537-4546
为实现工业园区企业污染排放精细化管控,捕捉工业园区内企业污染排放与污染物浓度之间的响应关系,提出一种集成大气环境容量(AEC)和时空特征的工业园区PM2.5浓度预测模型.通过有限体积法获得工业园区日均大气自净能力指数(ASI),结合工业园区日排放数据作为AEC特征;同时利用小波分析和Pearson相关系数法提取时空特征,包括目标监测站PM2.5浓度的时间变化特征和其与周围监测点PM2.5的空间相关特征.通过CNN获取训练数据中PM2.5的关联特征,并利用BILSTM充分反映时间序列训练数据中隐含的关键历史长短期依赖关系,确保快速准确的预测性能,以2018~2020年濮阳市工业园区大气污染物观测数据、气象数据及排放数据进行实验验证.结果表明:本文提出的CNN-BILSTM预测模型相较于传统LSTM模型预测精度提升10%;AEC特征和时空特征有利于提高模型精度和稳定性,集成AEC和时空特征的CNN-BILSTM预测模型在PM2.5污染天数预测准确率最高,达93%;分季节预测结果表明,秋冬季的预测精度最高.  相似文献   

4.
精准预测大气污染颗粒物PM2.5、PM10浓度能为大气污染防治提供科学依据,但目前较多PM2.5和PM10浓度预测在缺少污染源排放清单和能见度数据时,预测精度不高。而目前深度学习模型应用于PM2.5和PM10浓度预测的研究还鲜见报道。基于广州市2015年6月1日—2018年1月10日的空气质量和气象监测历史数据,分别构建了随机森林模型(RF)、XGBoost模型2种传统的机器学习模型和长短时记忆网络(LSTM)、门控循环单元网络(GRU)2种深度学习模型,并对广州市的PM2.5、PM10日均浓度值进行预测。结果表明:在缺少污染源排放清单和能见度数据时,4种模型也能较好地预测PM2.5、PM10日均浓度。根据MSE、RMSE、MAPE、MAE和R2等评价指标,对4个模型的PM2.5、PM10预测效果进行测评,得出深度学习GRU模型预测效果均为最佳,RF模型的预测结果均为最差。相比目前研究及应用较多的RF模型、XGBoost模型、LSTM模型,基于深度学习的GRU模型能更好地预测PM2.5、PM10浓度。  相似文献   

5.
在城市空气质量预测中,ρ(PM2.5)会受到气象条件和时间周期的影响。选取北京市全市为实验区域,对多种污染物浓度特征、时间特征及天气特征等进行分析,采用2019年33个空气质量监测站逐小时数据开展PM2.5预测实验,建立了基于特征的LightGBM (light gradient boosting machine) PM2.5质量浓度预测模型,分别与随机森林模型(RF)、梯度提升树模型(GBDT)、 XGBoost模型3个PM2.5浓度预测模型进行对比。结果表明:在PM2.5浓度预测精度方面,LightGBM模型最高,XGBoost模型次之,RF模型最差。LightGBM模型的PM2.5污染浓度预测准确率高于其他模型,R2为0.9614,且具有训练快、内存少等优点。LightGBM模型的5个评估指标均优于其他模型,说明其在PM2.5逐时预测上具有很好的稳定性和应用前景。  相似文献   

6.
董浩  孙琳  欧阳峰 《环境工程》2022,40(6):48-54+62
针对现有PM2.5浓度时序预测模型预测精度不高的问题,基于Informer建立了1个Seq2Seq的单站点PM2.5浓度多步时序预测模型,以历史污染物数据和气象数据为输入,实现对未来一段时间PM2.5浓度的预测。所构建模型基于ProbSparse (概率稀疏)自注意力机制提取所输入的序列信息,能够广泛地捕获输入序列的长期依赖信息,并对影响因子之间复杂的非线性关系进行建模,从而提高预测准确度。采用北京市2015-2019年逐小时空气污染物数据与气象数据进行模型训练、验证和测试,建立与循环神经网络(RNN)、长短期记忆网络(LSTM)的对比实验并与其他现有研究方法进行比较,结果表明:对未来1~6 h的PM2.5浓度时序预测,Informer的平均绝对误差(MAE)、均方根误差(RMSE)和可决系数(R2)指标均为最好,实现了较为准确的预测。  相似文献   

7.
为了能及时、准确的估算出PM2.5浓度及污染等级,分别构建了K最邻近模型(KNN)、BP神经网络模型(BPNN)、支持向量机回归模型(SVR)、高斯过程回归模型(GPR)、XGBoost模型和随机森林模型(RF)6个PM2.5浓度预测模型,选取江西省赣州市为实验区域,采用2017~2018年逐小时气象站数据、PM2.5浓度数据和Merra-2再分析数据开展PM2.5预测实验.结果表明,缺少污染物观测数据时,利用能见度和气象因子等数据也能较好的预测PM2.5浓度.在PM2.5浓度预测精度方面,XGBoost模型最高,随机森林模型次之,高斯过程回归模型最差.6个模型的预测精度总体呈现冬季最高,秋季和春季次之,夏季最低.XGBoost模型的PM2.5污染等级预测准确率高于其他模型,综合准确率达87.6%,并且XGBoost模型具有训练时间短,占用内存小等优点.XGBoost模型的变量重要性结果表明,能见度变量的重要性最高,相对湿度和时间变量次之.本研究可为环境部门准确预测、预报PM2.5浓度提供参考.  相似文献   

8.
于伸庭  刘萍 《环境工程》2020,38(6):176-180,66
准确预测PM2.5浓度可以有效避免重污染天气对人体带来的危害。现有方法往往重视本地历史信息对PM2.5浓度预测的影响,而忽略空间传输的作用。提出了一种长短期记忆网络和卷积神经网络(LSTM-CNN)相结合的方法,利用历史PM2.5浓度数据、历史气象数据和时间数据,对空气质量监测站未来6 h PM2.5浓度做出预测。该模型主要由2部分组成:1)基于长短期记忆网络的时序预测模型,模拟本地因素对PM2.5浓度预测的影响;2)基于一维卷积神经网络的特征提取模型,模拟周边地区污染物的传输与扩散对PM2.5浓度预测的影响。随机选取了北京市市区及郊区7个监测站在2014-05-01—2015-04-30期间的数据,用于研究和评估LSTM-CNN模型。结果表明:提出的LSTM-CNN模型相比于LSTM模型具有更好的预测效果,且对于郊区站点预测效果的改进略优于市区站点。  相似文献   

9.
邱玲  刘芳  张祥  高天 《环境科学研究》2018,31(10):1685-1694
随着城市化和工业化进程的加快,空气颗粒物污染成为城市最为严峻的环境问题之一.依据植被的横向结构、竖向结构及植被类型3个因子对宝鸡市公园绿地进行划分,并选取11种不同植被结构的绿地,在分析地点、时间、风速、温度、相对湿度、绿地面积等环境因子对绿地内空气中ρ(PM2.5)和ρ(PM10)"本底效应"影响的基础上,探究不同植被结构绿地对空气颗粒物质量浓度削减作用的差异.结果表明:①在不同监测地点和监测时段内,ρ(PM2.5)和ρ(PM10)有极显著差异,植物养护管理程度较高的城市公园绿地对空气颗粒物质量浓度削减作用较为明显,一天中空气颗粒物质量浓度呈现出早晚高、中午低的变化趋势;②风速、温度、相对湿度对ρ(PM2.5)和ρ(PM10)有极显著影响,在晴朗、无风或微风天气条件下,ρ(PM2.5)和ρ(PM10)随风速的增大、温度的减小、相对湿度的增大而增大,且ρ(PM10)变化范围大于ρ(PM2.5);③1 hm2以下绿地面积的变化对ρ(PM2.5)和ρ(PM10)无显著影响;④不同植被结构绿地内ρ(PM2.5)无显著差异,但ρ(PM10)有极显著差异,其中开敞式以灌木为主的绿地中ρ(PM10)最低,多层闭合式阔叶林中ρ(PM10)最高,其余9种植被结构绿地削减作用居中且相近.研究显示,不同植被结构的城市公园绿地对ρ(PM2.5)和ρ(PM10)的削减作用存在一定的差异且受多种环境因素的共同制约,可为优化城市绿地植被结构进而有效改善空气质量提供依据.   相似文献   

10.
基于阶段式时序注意力网络的PM2.5鲁棒预测   总被引:1,自引:1,他引:0       下载免费PDF全文
陆瑶  杨洁  邵智娟  朱聪聪 《环境工程》2021,39(10):93-100
PM2.5浓度的预测对于大气污染治理、改善环境质量等起到重要作用。受气象条件变化与大气污染物排放等多种因素的交叉影响,PM2.5预测通常易受突变事件及噪声数据干扰。因此,基于对气象条件以及大气污染物与PM2.5的相关性分析,提出阶段式时序注意力网络模型(staged temporal-attention network,STAN),该方法融合多段注意力学习模块与循环神经网络,建模气象因素与大气污染物对PM2.5浓度的交叉影响。统计分析北京市、上海市、广州市预测结果的绝对误差值,可知:1)对比广泛使用的单一类模型支持向量机(support vector machine,SVM)、长短期时序记忆方法(long short-term memory,LSTM)和多层感知机(multilayer perceptron,MLP),STAN可达到10%以上的性能领先;对比最新的融合类模型U型网络(U-net),STAN领先了7%的优势。2)以北京市冬季预测结果为例进行统计分析,STAN的预测值与实测值之间的拟合系数可有95.2%的性能领先。此外,在鲁棒性分析中发现,STAN在含有10%噪声的数据上进行预测,误差上升幅度仅为9.3%。结果表明:注意力机制与时序学习模块相结合能够深度挖掘PM2.5变化规律并抑制噪声数据,且STAN模型可以进行PM2.5浓度的鲁棒预测。  相似文献   

11.
PM2.5作为主要的大气污染物之一,严重影响空气质量和人体健康. 基于深度学习的PM2.5小时预报研究中,不同输入要素的历史时间序列对PM2.5预报结果的响应情况存在差异. 因此,基于太原市2019—2020年空气质量监测站、气象观测站的数据,提出一种多通道长短期记忆网络(Multi-Channels Long Short Term Memory,MULTI-LSTM)模型对PM2.5浓度进行预报. 首先使用独立的长短期记忆网络(LSTM)学习每个输入要素,然后将每个模型的学习结果进行融合,最终获得未来多小时的PM2.5浓度预报结果. 将单通道LSTM模型(BASE-LSTM)和LSTM扩展模型(LSTME)作为对照模型,与MULTI-LSTM模型的预报精度进行对比. 结果表明:不同观测窗与预报时效下,MULTI-LSTM模型在测试集上的预报精度明显高于其他2个对照模型. 其中,MULTI-LSTM模型在8 h观测窗和6 h预报时效组合下,均方根误差(RMSE)、平均绝对百分误差(MAPE)以及拟合指数(IA)分别为20.26 μg/m3、51%、0.91. 对未来逐6 h的预报中,观测窗宽度从8 h增至32 h,MULTI-LSTM模型的预报精度无明显变化,观测窗宽度为40和48 h时,RMSE比8 h观测窗下分别下降了2%和3%. 此外,增加LSTM层深度不会提升模型的预报精度. 研究显示,利用MULTI-LSTM模型作为PM2.5浓度小时预报模型,通过选取合适的观测窗宽度与气象要素,可获得精度较高的预报结果.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号