首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用臭氧氧化—曝气生物滤池联用处理实际生产中排放的含硝基苯类化合物废水。实验结果表明:臭氧氧化过程可破坏硝基苯类化合物的苯环结构,显著提高有机物的可生物降解性;单独采用臭氧氧化法,在臭氧氧化柱进水pH为9、臭氧加入量为200m g/L的条件下,硝基苯类化合物的去除率可达98%;采用臭氧氧化—曝气生物滤池联用处理含高浓度硝基苯类化合物废水,COD去除率可达80%以上,处理后废水COD稳定在50m g/L以下。  相似文献   

2.
合成洗涤剂生产废水处理技术   总被引:5,自引:0,他引:5  
宋爽  杨岳平  徐新华 《化工环保》2001,21(6):340-343
采用混凝法对高浓度合成洗涤剂生产废水进行预处理,去除废水中大量的SS、油脂类物质及表面活性剂,出水与其他低浓度废水混合进行生物氧化处理。试验结果表明,混凝气浮法对COD、SS及油脂类物质去除效果明显,COD去除率为35%-56%;在废水含盐量较高的情况下,生物氧化法仍有较高的处理效率,COD去除率达到70%-95%。  相似文献   

3.
土霉素麦迪霉素废液的生化处理   总被引:8,自引:0,他引:8  
潘志祥 《化工环保》1990,10(2):76-80
采用厌氧消化-接触氧化两级生物处理工艺可有效地处理土霉素、麦迪霉素生产废液。试验结果表明,总水力停留时间为6天,COD 总去除率可达98%以上,装置出水 COD 浓度低于200毫克/升。全厂总排水可达国家排放标准。  相似文献   

4.
国外动态     
芬顿氧化法,即用 Fe~(2 )和过氧化氢对废水进行处理的方法。将此法与生物处理法结合使用,可处理难分解的有机合成废水。研究结果表明,对几乎不含 BOD 的 P-甲苯胺废水,投加 Fe~(2 )200ppm,过氧化氢9000ppm,反应20分钟,其 TOC(770ppm)和 COD(1400ppm)可分别除去64%和92%,若再接着用间歇活性污泥法处理,其TOC 和 COD 的总去除率分别可达93%和94%。该方法用于处理 m-甲苯胺废水同样取得良好效果,该废水经芬顿氧化法处理后,TOC 和 COD 的去除率分别为61%,93%,再经生物处理,其 TOC 和COD 的总去除率分别可达94%,98%。用芬顿氧化法处理尿素高缩合树脂和三羟密胺树脂的废水时,其 TOC 的去除率分别为84%和89%,但再进行生物处理,无明显效果。对抛光研磨废水,采用酸化处理,芬顿氧化处理及生物处理相结合的形式,COD 总去除率为98%。  相似文献   

5.
采用臭氧氧化—包埋菌流化床生物处理组合工艺对煤气化废水进行深度处理。实验结果表明:当臭氧的质量浓度20mg/L、臭氧进气流量1.5 L/min、臭氧通气时间30 min、包埋菌流化床水力停留时间24 h时,臭氧氧化工序的COD去除率达到30.0%~40.0%,总酚去除率达到100.0%;包埋菌流化床工序的COD去除率达到60.0%以上,氨氮的去除率大于95.0%;经组合工艺处理后,出水COD60 mg/L,ρ(氨氮)1.0 mg/L,ρ(总酚)未检出,色度小于50倍,达到GB8978—1996《污水综合排放标准》中的一级排放标准。  相似文献   

6.
分别采用臭氧氧化、微电解—Fenton氧化和电化学降解的方法处理COD为6 000~8 000 mg/L、BOD5/ COD为 0.12~0.17的光引发剂生产废水,比较了3种方法对废水中COD的去除效果。实验结果表明:臭氧氧化反应2 h时废水COD去除率达35.9%,BOD5/COD 为0.20;微电解反应4 h再Fenton氧化4 h后,废水COD去除率为38.2%,BOD5/COD 为0.28;电化学降解2 h后废水COD去除率达83.9%,BOD5/COD 为0.46,降解反应遵循零级反应动力学,反应速率常数为2.6 kg/(m3·h)。3种方法对光引发剂生产废水的处理效果顺序为:电化学降解>微电解—Fenton氧化>臭氧氧化。  相似文献   

7.
土霉素麦迪霉素废水处理研究   总被引:3,自引:0,他引:3  
对土霉素、麦迪霉素废水进行沉淀和絮凝预处理,可以将废水中55%的 COD去除。预处理后的混合废水生物降解性能得到改善,在生物接触氧化处理中 COD 去除率达90%,出水 COD 在200毫克/升左右。  相似文献   

8.
分别采用混凝、化学氧化和加Ca(OH)_2曝气的方法对三甲氧基苯甲醛(TMBA)生产废水进行处理。实验结果表明:混凝和化学氧化的方法未能明显改善TMBA废水的可生化性,而加Ca(OH)_2曝气的方法能明显改善TMBA废水的可生化性;当TMBA废水中Ca(OH)_2的质量浓度为20 g/L、曝气时间为3.0 h时,废水的COD去除率为35%,色度去除率达到90%,BOD_5/COD提高到0.35。  相似文献   

9.
O3-H2O2氧化法处理印染废水   总被引:2,自引:0,他引:2  
彭人勇  邱晓 《化工环保》2013,33(4):308-311
采用O3-H2O2氧化法对印染废水进行氧化处理,比较了O3氧化法和O3-H2O2氧化法对印染废水的处理效果,考察了初始废水pH、H2O2加入量、O3流量和反应时间对废水的色度去除率和COD去除率的影响。实验结果表明:O3-H2O2氧化法对废水的COD和色度的去除效果比O3氧化法更好;在初始废水pH为11、H2O2加入量为13mmol/L、O3流量为6g/h、反应时间为60min的最佳工艺条件下,处理后废水COD为61.50mg/L,COD去除率为95.73%,废水色度为5倍,色度去除率为99.75%,TOC为37.84mg/L,TOC去除率为85.10%,BOD5为22.76mg/L,BOD5去除率为90.20%,BOD5/COD为0.37。  相似文献   

10.
采用缺氧—好氧—催化臭氧氧化工艺处理某石化厂的含盐废水。实验结果表明:在进水COD为200~350mg/L的条件下,经生化处理后的出水COD稳定在50~60 mg/L,COD去除率稳定在75%左右;在臭氧投加量为4.5g/L、V(催化剂Ⅱ)∶V(废水)=1.5∶1的条件下,进行连续催化臭氧氧化后出水COD稳定在20 mg/L以下,COD去除率大于70%,满足DB 61/224—2011《黄河流域(陕西段)污水综合排放标准》。表征结果显示,催化剂表面含有铜元素,比表面积为250.815 m2/g,吸水率为60.9%,经过滤可去除废水中残留的催化剂。  相似文献   

11.
《化工环保》1991,11(5):279-281,302
本文介绍了生化处理油漆废水的可行性,采用生物接触氧化法处理油漆废水的流程、主要设备、工艺条件、处理效果以及经济、环境分析等。运行结果表明,该法处理油漆废水的效果较好,COD 的去除率近80%,出水水质可达到排放标准。  相似文献   

12.
徐文倩 《化工环保》2013,33(4):316-320
采用混凝-Fenton试剂氧化或混凝-臭氧氧化两种氧化技术预处理上海某医药集团原料药废水。实验结果表明:采用聚合氯化铝(PAC)和聚丙烯酰胺(PAM)复合混凝处理该废水,在混凝pH为9.5、混凝时间1h、PAC和PAM加入量分别为600mg/L和12mg/L时,COD的去除率可达23%;混凝后废水再分别用臭氧氧化和Fenton试剂氧化处理,臭氧氧化明显比Fenton试剂氧化经济有效,在臭氧氧化pH为10、臭氧加入量为15g/L、臭氧氧化时间为1h的条件下,废水COD去除率为27.8%,废水BOD5/COD明显提高,为后续生化处理提供了良好的条件。  相似文献   

13.
采用缺氧—好氧—催化臭氧氧化工艺处理某石化厂的含盐废水。实验结果表明:在进水COD为200~350 mg/L的条件下,经生化处理后的出水COD稳定在50~60 mg/L,COD去除率稳定在75%左右;在臭氧投加量为4.5 g/L、V(催化剂Ⅱ)∶V(废水)=1.5∶1的条件下,进行连续催化臭氧氧化后出水COD稳定在20 mg/L以下,COD去除率大于70%,满足DB 61/224—2011《黄河流域(陕西段)污水综合排放标准》。表征结果显示,催化剂表面含有铜元素,比表面积为250.815 m2/g,吸水率为60.9%,经过滤可去除废水中残留的催化剂。  相似文献   

14.
采用热带假丝酵母处理苎麻生物脱胶废水。将COD为23 060 mg/L的苎麻生物脱胶废水稀释1倍后进行发酵处理,COD去除率最高,为60.85%。发酵条件的正交实验结果表明:在发酵温度为35℃、初始发酵pH为7.0、接种量为10%、发酵时间为48 h的条件下,苎麻生物脱胶废水COD去除率最高;发酵温度为30℃、初始发酵pH为7.0、接种量为10%、发酵时间为48 h的条件下,单细胞蛋白生成量最高。发酵时间为48 h时,灭菌的发酵培养基的COD去除率为75.75%,单细胞蛋白生成量为5.375 g/L;未灭菌的发酵培养基的COD去除率为72.25%,单细胞蛋白生成量为2.875 g/L。  相似文献   

15.
卢钧  陈泉源 《化工环保》2021,41(2):161-167
采用强化混凝和高级氧化法对制药废水生化出水进行深度处理,比较了不同混凝剂、不同氧化方法(包括Na2S2O8氧化、电化学氧化、Fenton/类Fenton氧化)的处理效果。实验结果表明:经聚合硫酸铁与聚丙烯酰胺强化混凝处理后,废水的COD去除率达18.5%;强化混凝与不同氧化方法联用均可使废水脱色至无色,COD去除率达70.1%~92.4%。强化混凝—电化学氧化组合工艺的出水COD为27.1 mg/L,达到GB 8978—1996《污水综合排放标准》一级标准限值要求,且成本较低,适于实际应用。  相似文献   

16.
为了降低松香改性酚醛树脂生产废水的COD并改善其可生化性,采用微电解—芬顿氧化工艺对该废水进行预处理。研究了pH、微电解反应时间、曝气、双氧水投加量等对微电解和芬顿氧化处理效果的影响,考察了COD去除率和BOD5/COD值的变化趋势。实验结果表明:曝气条件下,调节废水pH为4、进行2次微电解、微电解反应时间各2.0 h时,废水的COD去除率为38%,BOD5/COD值提高为0.18;再投加7.5%(w)的双氧水,废水的COD去除率为65.3%,BOD5/COD值为0.37。采用微电解—芬顿氧化的预处理工艺,不仅有效去除了废水的COD,而且显著改善了废水的可生化性。  相似文献   

17.
采用臭氧氧化—包埋菌流化床生物处理组合工艺对煤气化废水进行深度处理。实验结果表明:当臭氧的质量浓度20 mg/L、臭氧进气流量1.5 L/min、臭氧通气时间30 min、包埋菌流化床水力停留时间24 h时,臭氧氧化工序的COD去除率达到30.0%~40.0%,总酚去除率达到100.0%;包埋菌流化床工序的COD去除率达到60.0%以上,氨氮的去除率大于95.0%;经组合工艺处理后,出水COD<60 mg/L,ρ(氨氮)<1.0 mg/L,ρ(总酚)未检出,色度小于50倍,达到GB8978—1996《污水综合排放标准》中的一级排放标准。  相似文献   

18.
处理土霉素废液的试验研究   总被引:8,自引:0,他引:8  
采用两级串联厌氧消化-臭氧氧化工艺可有效地处理高浓度土霉素毒性废液。厌氧消化两级总水力停留时间为8.4天,进水COD在6000—9000毫克/升范围内,出水COD为1000毫克/升,COD去除率达80%;臭氧氧化可使硫化物含量降至1毫克/升以下,同时COD也有所降低。  相似文献   

19.
采用两级氧化法处理油田压裂返排液。在次氯酸钠、次氯酸钙、过氧化氢、高锰酸钾4种氧化剂中,次氯酸钠的氧化效果最好。以次氯酸钠作为一级氧化剂,进行一级氧化处理;再分别采用次氯酸钙、过氧化氢、高锰酸钾进行二级氧化处理。在次氯酸钠加入量为40mL/L、一级氧化反应时间为30min、二级氧化反应时间为30min、初始废水COD为3976mg/L的条件下,二级氧化剂过氧化氢、次氯酸钙、高锰酸钾的最佳加入量分别为80,40,40mL/L,对应的COD去除率分别为82.60%,71.50%,83.50%。  相似文献   

20.
臭氧氧化法深度处理印染废水生化处理出水   总被引:7,自引:1,他引:6  
李昊  周律  李涛  邢丽贞 《化工环保》2012,32(1):30-34
采用臭氧氧化法深度处理印染废水生化处理出水。实验结果表明,在进气流量为2.5 L/min、进气中臭氧质量浓度为12.5 mg/L、臭氧通气时间为30 min、后续反应时间为30 min的条件下,废水的COD去除率约为40%,色度去除率大于95%,处理后废水色度小于5倍,COD为45~70 mg/L,BOD5为10~13 mg/L,BOD5/COD=0.2,出水可生化性有所提高。三维荧光光谱分析和相对分子质量分布检测结果表明,臭氧氧化处理后废水中相对分子质量较大的物质被降解为相对分子质量较小的物质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号