首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Sixteen satellite-tagged adult male loggerhead sea turtles (Caretta caretta) dispersed widely from an aggregation near Port Canaveral, Florida, USA (28°23′N, −80°32′W) after breeding. Northbound males migrated further (990 ± 303 km) than southbound males (577 ± 168 km) and transited more rapidly (median initial dive duration = 6 (IQR = 4–16) versus 19 (IQR = 10–31) min, respectively).. Migration occurred along a depth corridor (20–40 m) except where constricted by a narrow continental shelf width. Males foraged in areas 27 ± 41 km2 day−1 at locations <1–80 km from shore for 100.1 ± 60.6 days, with variability in foraging patterns not explained by turtle size or geography. Post-breeding dispersal patterns were similar to patterns reported for adult female loggerhead sea turtles in this region and adult male loggerhead sea turtles elsewhere in the northern hemisphere; however, foraging ground distributions were most similar to adult female loggerhead sea turtles in this region.  相似文献   

2.
The pattern and characteristics of diving in 14 female northern rockhopper penguins, Eudyptes chrysocome moseleyi, were studied at Amsterdam Island (37°50′S; 77°31′E) during the guard stage, using electronic time–depth recorders. Twenty-nine foraging trips (27 daily foraging trips and two longer trips including one night) with a total of 16 572 dives of ≥3 m were recorded. Females typically left the colony at dawn and returned in the late afternoon, spending an average of 12 h at sea, during which they performed ∼550 dives. They were essentially inshore foragers (mean estimated foraging range 6 km), and mainly preyed upon the pelagic euphausiid Thysanoessa gregaria, fishes and squid being only minor components of the diet. Mean dive depth, dive duration, and post-dive intervals were 18.4 m (max. depth 109 m), 57 s (max. dive duration 168 s), and 21 s (37% of dive duration), respectively. Descent and ascent rates averaged 1.2 and 1.0 ms−1 and were, together with dive duration, significantly correlated with dive depth. Birds spent 18% of their total diving time in dives reaching 15 to 20 m, and the mean maximum diving efficiency (bottom time:dive cycle duration) occurred for dives reaching 15 to 35 m. The most remarkable feature of diving behaviour in northern rockhopper penguins was the high percentage of time spent diving during daily foraging trips (on average, 69% of their time at sea); this was mainly due to a high dive frequency (∼44 dives per hour), which explained the high total vertical distance travelled during one trip (18 km on average). Diving activity at night was greatly reduced, suggesting that, as other penguins, E. chrysocome moseleyi are essentially diurnal, and locate prey using visual cues. Received: 9 December 1998 / Accepted: 3 March 1999  相似文献   

3.
Knowledge on how divers exploit the water column vertically in relation to water depth is crucial to our understanding of their ecology and to their subsequent conservation. However, information is still lacking for the smaller-bodied species, due mostly to size constraints of data-loggers. Here, we report the diving behaviour of a flying diving seabird, the Cape Cormorant Phalacrocorax capensis, weighing 1.0–1.4 kg. Results were obtained by simultaneously deploying small, high resolution and high sampling frequency GPS and time-depth loggers on birds breeding on islands off Western South Africa (34°S, 18°E) in 2008. In all, dive category was assigned to all dives performed by 29 birds. Pelagic dives occurred almost as frequently as benthic dives. Pelagic dives were shallow (mean: 5 m) and took place over seafloors 5–100 m deep. Benthic dives were deeper, occurring on seafloors mainly 10–30 m deep. Dive shape was linked to dive category in only 60% of dives, while the descent rate, ascent rate and bottom duration/dive duration ratio of a dive best explained its dive category. This shows that only the concomitant use of tracking and depth tags can adequately classify diving strategies in a diver like the Cape Cormorant. Diet was mainly Cape Anchovy Engraulis encrasicolis, suggesting that birds probably displayed two contrasted strategies for capturing the same prey. Flexible foraging techniques represent an important key to survival inside the highly productive but heterogeneous Benguela upwelling ecosystem.  相似文献   

4.
The foraging ecology of seven Gentoo penguins,Pygoscelis papua, breeding at Ardley Island, Antarctica was studied using animal-attached devices which recorded swimming speed, heading and dive depth. Reconstruction of the foraging routes by vectorial analysis of the data indicated that at no time did the birds forage on the sea bed. Swimming speed was relatively constant at 1.7 m s-1, but rates of descent and ascent in the water column during dives increased with increasing maximum dive depth due to changes in descent and ascent angles. The amount of time spent discending and ascending in the water column increased with maximum dive depth as did the duration spent at the point of maximum depth. Dive profiles were essentially either U-shaped (flat-bottomed dives), or V-shaped (bounce dives). Development of a model based on simple probability theory indicated that the optimal dive profile to maximize the chances of prey acquisition depends on vertical prey distribution and on the visual capabilities of the birds with respect to descent and ascent angles.  相似文献   

5.
The diving behaviour of king penguins (Aptenodytes patagonicus) was studied on the Falkland Islands, where a small population (ca. 300 fledglings year–1) is located at the geographical limit of their breeding range. King penguins rearing newly hatched chicks were equipped with time-depth recorders before leaving for sea. In total, 20,175 dives >3 m were recorded from 12 birds during 15 foraging trips with a mean duration of 5.7±2.3 days. The majority of the trips was directed up to 500 km to the northeast of the breeding colony in slope waters of, and oceanic waters beyond, the Patagonian shelf. Mean time spent underwater accounted for 42±9% of the foraging trip. Mean dive depth achieved was 55±16 m; maximum dive depth recorded was 343 m. Mean dive duration was 159±25 s; maximum dive duration was 480 s. The mean vertical distance covered was 140±65 km trip–1; and on average birds covered 25 km day–1. Synchronous diving behaviour was observed in two birds for a period of about 24 h after leaving the colony. Dive depth correlated positively with: (1) light intensity, (2) dive duration and (3) vertical velocities, thus confirming previous findings obtained from conspecifics at other breeding sites and indicating comparable diving behaviour. However, separation of dives according to their profile—V-, U-, or W-shaped—revealed significant differences between certain dive parameters. For a given depth range, bottom time was longer and vertical velocities higher in W-dives than in U-dives. This, together with a higher number of W-dives at dawn and dusk, suggests that foraging is more effective during W-dives than U-dives, and during twilight. These findings imply that king penguins have to make more complex decisions, individually and socially, on the performance of the subsequent dive than previously thought.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

6.
Penguins may exhibit plasticity in their diving and foraging behaviors in response to changes in prey availability. Chinstrap penguins are dependent predators of Antarctic krill in the Scotia Sea region, but krill populations have fluctuated in recent years. We examined the diet of chinstrap penguins at Livingston Island, South Shetland Islands, in relation to their diving and foraging behavior using time-depth recorders over six breeding seasons: 2002–2007. When krill were smaller, more chinstrap penguins consumed fish. In these years, chinstrap penguins often exhibited a shift to deep dives after sundown, and then resumed a shallower pattern at sunrise. These night dives were unexpectedly deep (up to 110 m) and mean night dive depths sometimes exceeded those from the daytime. The average size of krill in each year was negatively correlated to mean night dive depths and the proportion of foraging trips taken overnight. Based on these patterns, we suggest that when krill were small, penguins increasingly targeted myctophid fish. The average krill size was negatively correlated to the time chinstrap penguins spent foraging which suggests that foraging on smaller krill and fish incurred a cost: more time was spent at sea foraging.  相似文献   

7.
Nine individuals of shortfin mako, Isurus oxyrinchus, were tracked in the southeastern Pacific Ocean, off northern Chile, by means of pop-up satellite archival tags. No common pattern was observed in their trajectories, apart from a movement onshore of all the fish tracked during June–August. The average estimated rate of movement was of c. 27 km day−1. Data were collected and processed for a total of 341 days, including 33 days for one recaptured fish specimen, allowing high-resolution archived data to be downloaded. The fish spent most of their time in the mixed layer but undertook dives down to 888 m. Ambient temperatures ranged between 4.6 and 24.1°C, and the sea surface temperatures recorded ranged from 13.4 to 24.1°C during the study period. No clear diel pattern in depth behavior was observed, but mean vertical distribution was deeper during the daytime. Moreover, a foraging pattern, consisting of rapid descents below the thermocline followed by slower ascents, was generally observed during daylight hours. Dissolved oxygen concentration and water temperature seem to be the main factors affecting the vertical range of the species in the area. This is the first study on electronic tagging of the shortfin mako in the southeastern Pacific Ocean and covers the longest total tracking period reported so far for this species.  相似文献   

8.
Contrasting conditions at-sea are likely to affect the foraging behaviour of seabirds. However, the effect of season on the dive parameters of penguins is poorly known. We report here on an extensive study of the diving behaviour of king penguins (Aptenodytes patagonicus) over the bird's complete annual cycle at the Crozet Islands. Time-depth recorders were used to record dive duration, bottom duration, post-dive interval, ascent rate and descent rate in breeding adults during different seasons in 1995 and 1996. Seasons included summer (n=6, incubation; n=6, chick brooding), autumn and winter (n=5 and n=3, respectively, chick at the crèche stage), and spring (n=4, birds at the post-moult stage). In all seasons dive duration increased with dive depth, but, for a given depth, dives were longer in winter (6.8 min when averaged over the 100-210 m depth layer) than in spring (4.6 min) and summer (4.4 min). The time spent at the bottom of the dives, which probably represents a substantial part of the feeding time, was much longer in winter (2.5 min per dive for dives over the 100-210 m layer) than during other seasons (1.0-1.4 min), i.e. there was a 2.5-fold augmentation for similar diving depths. Ascent and descent rates increased with increasing dive depth, but no difference in the relationships between rates of ascent and descent and dive depth was found among seasons. Furthermore, for all dive depths, ascent and descent rates were independent of the bottom duration. In all seasons post-dive intervals increased with dive duration and with dive depth, but they were longer in spring (2.3 min for dives over the 100-210 m layer) and summer than in autumn and winter (1.6-1.8 min). The diving efficiency decreased with increasing dive depth and was higher in autumn and winter (0.22-0.29) than in summer and spring (0.15-0.18). The large increase in bottom and dive duration from spring to winter is in agreement with the seasonal drop in prey density, with penguins spending more time searching for prey. In contrast, the consistency of the vertical velocity during contrasting conditions at-sea suggests that the transit time to depth is an important component of the foraging behaviour (scanning of the water column) that is independent of the prey availability. The time budget of the penguins during diving in a fluctuating environment appears to vary primarily during the bottom phase of the dives, with bottom duration increasing with diminishing prey supplies, while post-dive intervals shorten in the same time.  相似文献   

9.
Satellite telemetry was used to study the movements and behaviour of ten blue sharks and one individual each of shortfin mako, thresher and bigeye thresher off eastern Australia. The tracks showed latitudinal movements of up to 1,900 km, but none of the sharks travelled away from the eastern Australian region. Tracking periods did not exceed 177 days. All species showed oscillatory dive behaviour between the surface layers to as deep as 560–1,000 m. Blue sharks spent 35–58% of their time in <50 m depths and 10–16% of their time in >300 m. Of these four species, the bigeye thresher spent the least time in the surface layers and the most time at >300 m depth. All four species showed clear diel behaviour generally occupying shallower depths at night than during the day. Blue sharks were mainly in 17.5–20.0°C water, while the thresher sharks showed a more bimodal temperature distribution.  相似文献   

10.
Owing to the necessity of delivering food to offspring at colonies, breeding seabirds are highly constrained in their foraging options. To minimize constraints imposed by central-place foraging and to optimize foraging behavior, many species exhibit flexible foraging tactics. Here we document the behavioral flexibility of pursuit-diving common murres Uria aalge when foraging on female capelin Mallotus villosus in the northwest Atlantic. Quite unexpectedly, being visual foragers, we found that common murres dived throughout the day and night. Twenty-one percent of recorded dives (n = 272 of 1,308 dives) were deep (≥50 m; maximum depth = 152 m, maximum duration = 212 s), bringing murres into sub-0°C water in the Cold Intermediate Layer (CIL; 40–180 m) of the Labrador Current. Deep dives occurred almost exclusively during the day when murres would have encountered spatially predictable aggregations of capelin between 100 and 150 m in the water column. Temperatures within the CIL shaped trophic interactions and involved trade-offs for both predators and prey. Sub-0°C temperatures limit a fish’s ability to escape from endothermic predators by reducing burst/escape speeds and also lengthening the time needed to recover from burst-type activity. Thus, while deep diving may be energetically costly, it likely increases certainty of prey capture. Decreased murre foraging efficiency at night (indicated by an increase in the number of dives per bout) reflects both lower light conditions and changing prey behavior, as capelin migrate to warmer surface waters at night where their potential to escape from avian predators could increase.  相似文献   

11.
The diving behaviour of southern rockhopper penguins (Eudyptes c. chrysocome) was studied at two breeding sites in the Southwest Atlantic: the Falkland Islands and Staten Island, Argentina. Incubating and brooding birds were equipped with time-depth recorders to monitor their foraging activities. Rockhopper penguins from Staten Island started their breeding season about 3 weeks earlier than their conspecifics from the Falkland Islands. The foraging area used by incubating males from the Falkland Islands comprised about 150,000 km² to the northeast of the breeding site and was characterised by shelf and slope waters, whereas the foraging area of incubating males from Staten Island comprised 350,000 km² of oceanic waters to the southeast of the breeding site. A number of dive parameters were measured and compared between the four study groups: Incubating males and brooding females from the Falkland Islands, and incubating males and females from Staten Island. In all study groups, dive depth correlated positively to light intensity, dive duration and vertical velocity. However, significant differences between various diving parameters of the study groups were noted, not only in terms of diving performance, but also as regards diving efficiency (DE). A principal component analysis (PCA) on 16 variables revealed that 75% of the variance could be explained by only two principal components: diving pattern (PC1) and diving effort (PC2). PC1 indicated that the birds from Staten Island, both males and females, dived deeper, covered a greater vertical distance per hour and had higher ascent rates, but spent less time underwater and at the bottom of a dive, and had a lower DE than conspecifics from the Falkland Islands. PC2, which included the percentage of foraging dives, the number of dives per hour, dive duration, bottom time and descent rate, differed significantly between incubating males from the Falkland Islands and the other three groups, which were all very similar. Overall, the diving behaviour was notably similar to that of conspecifics from the Indian and Pacific Oceans. The implications of the results in terms of intra-specific adaptations as well as potential threats from human activities are discussed.  相似文献   

12.
Satellite telemetry data from 17 juvenile loggerhead turtles (43.5–66.5 cm straight carapace length) were used in conjunction with oceanographic data to analyze the influence of regional and seasonal oceanography on dive behavior in the North Pacific Ocean. Combined dive behavior for all individuals showed that turtles spent more than 80% of their time at depths <5 m, and more than 90% of their time at depths <15 m. Multivariate classifications of dive data revealed four major dive types, three representing deeper, longer dives, and one representing shallower dives shorter in duration. Turtles exhibited variability in these dive types across oceanographic regions, with deeper, longer dives in the Hawaii longline swordfish fishing grounds during the first quarter of the year, as well as in the Kuroshio Extension Bifurcation Region and the region near the Baja California Peninsula, Mexico. Turtles in the Kuroshio Extension Bifurcation Region also exhibited dive variability associated with mesoscale eddy features, with turtles making deeper, longer dives while associated with the strongest total kinetic energy. Turtles in the central North Pacific exhibited seasonality in dive behavior that appeared to reflect synchronous latitudinal movements with the North Pacific Subtropical Front and the associated seasonal, large-scale oceanography. Turtles made deeper, longer dives during the first quarter of the year within this region, the reported time and area where the highest loggerhead bycatch occurs by the longline fishery. These results represent the first comprehensive study of dive data for this species in this region. The increased understanding of juvenile loggerhead dive behavior and the influences of oceanography on dive variability should provide further insight into why interactions with longline fisheries occur and suggest methods for reducing the bycatch of this threatened species.  相似文献   

13.
Hawksbill sea turtles (Eretmochelys imbricata) nesting in Barbados (Needham’s Point, 13° 04′ 41.33′′ N, 59° 36′ 32.69′′W) were outfitted with GPS dataloggers over three breeding seasons (2008–2010) to track movement during inter-nesting intervals. Most females established spatially restricted resident areas up current and within 7 km of the nesting beach where they spent the majority of the inter-nesting interval. Females nesting earlier in the season settled on shallower sites. Only experienced remigrant turtles occupied the most distant resident areas. Females tracked for multiple inter-nesting intervals exhibited site fidelity, but the area contracted and the activity of females decreased with each successive interval. Hawksbills may trade off site characteristics with distance from the nesting beach and reduce activity over the course of the breeding season to optimise energy reserves during inter-nesting intervals.  相似文献   

14.
The horned sea star (Protoreaster nodosus) is relatively common in the Indo-Pacific region, but there is little information about its biology. This study of the population biology of P. nodosus was carried out in Davao Gulf, The Philippines (7°5′N, 125°45′E) between September 2006 and May 2008. Protoreaster nodosus was found in sand and seagrass dominated habitats at a mean density of 29 specimens per 100 m2 and a mean biomass of 7.4 kg per 100 m2, whereas a significantly lower density and biomass was found in coral and rock dominated habitats. Adult specimens (mean radius R = 10.0 cm) were found at depths of 0–37 m, whereas juveniles (R < 8 cm) were only found in shallow sandy habitats with abundant seagrass (water depth ≤2 m). Increased gonad weights were found from March to May (spawning period), which coincided with an increasing water temperature and a decreasing salinity. Density and biomass did not change significantly during reproduction, but sea stars avoided intertidal habitats. All specimens with R > 8 cm had well developed gonads and their sex ratio was 1:1. Protoreaster nodosus grew relatively slowly in an enclosure as described by the exponential function G = 7.433 e−0.257 × R . Maturing specimens (R = 6–8 cm) were estimated to have an age of 2–3 years. Specimens with a radius of 10 cm (population mean) were calculated to have an age of 5–6 years, while the maximum age (R = 14 cm) was estimated as 17 years. Potential effects of ornamental collection on the sea star populations are discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
During the El Niño of 1982/1983, the Humboldt penguin population diminished dramatically in the whole distributional area of the species. Recovery of the population was slow since 1983 and it has been suggested that large numbers of Humboldt penguins die at sea, entangled in nets, or starve to death, even during non-“El Niño” years. We were able to determine for the first time, how Humboldt penguins on Pan de Azúcar Island (26°S; 72°W) utilize their marine habitat and where their feeding areas lie. For this purpose we employed two streamlined Argos satellite transmitters during the 1994/1995 and 1995/1996 breeding seasons, respectively. Mean travelling speed of Humboldt penguins during foraging trips was 0.94?m s?1 and 50% of bird positions were located within 5?km of the island (90% within 35?km). Total area covered by Humboldt penguins foraging from Pan de Azúcar Island was 12?255?km2. Satellite transmitters also recorded dive duration; penguins spent on average 7.8 to 9?h diving per foraging day but showed no preferences for particular feeding areas. Mean daily dive durations (4-d mean) recorded during the 1994/1995 breeding season were positively correlated between birds. Significant correlation between dive duration and sea surface temperature anomalies and negative correlation between dive duration and fishery landings at nearby Caldera harbour indicate that the 1994/1995 increase in foraging effort was a response to deteriorating prey availability. Sea surface temperatures during the 1995/1996 breeding season were colder than average, and we observed no trends in bird diving activities.  相似文献   

16.
The lesser mouse lemur (Microcebus murinus) is a prosimian primate which presents evidence of sex ratio bias of offspring that agrees with the direction of bias predicted by the local resource competition model for facultative sex ratio adjustment. That is, females overproduced sons when grouped prior to mating, whereas isolated females exhibited the opposite tendency. In this solitary species, social communication relies heavily on urinary chemical signals. To test the hypothesis that sex biases induced by social factors may be linked to urinary cues, isolated females were exposed (n = 76) or not (control group, n = 16) to urinary cues from other reproductively active females from the beginning of the breeding season (induced by long photoperiod) until oestrus. During that period, females were either continuously (n = 17) or partially (n = 59) exposed to chemosignal stimulation. Females in oestrus were placed in contact with a breeding male and subsequently isolated until they gave birth. All females entered oestrus but the timing of oestrus was significantly delayed by 1 week in urine-exposed females. A general depressive effect of long-term urine exposure on fecundity was demonstrated, involving fewer impregnations, higher abortion frequency and smaller litter sizes. Among females giving birth (n = 55) to a total of 129 young, a significant positive correlation was found between sex ratio bias towards males and the duration of urine exposure. However, the shift in sex ratio at birth depended on the duration of urine stimulation during a sensitive period extending from the beginning of the long photoperiod until the beginning of the follicular phase. In the absence of urinary cues during the sensitive period, females significantly overproduced daughters (32% males of 53 newborn). As urine exposure increased during the sensitive phase, the proportion of males in litters increased from 54% males (n = 50) in partially urine-exposed females to a significant bias towards males (69.2% of 26 newborn) in totally exposed females. The biased sex ratio in response to chemical cues did not show consistent relationships with maternal body weight, parity or litter size. Although the intrinsic mechanisms involved in sex-biased conceptions are not known, chemical cues could interact with the photoperiodic control of gonadotropin secretions. Received: 14 January 1995/Accepted after revision: 26 November 1995  相似文献   

17.
Chinstrap, Pygoscelis antarctica, and gentoo, P. papua, penguins are sympatric species that inhabit the Antarctic Peninsula. To evaluate differences in the foraging habitat of these two species, we recorded their foraging locations and diving behavior using recently developed GPS-depth data loggers. The study was conducted on King George Island, Antarctica during the chick-guarding period of both species, from December 2006 to January 2007. The area used for foraging, estimated as the 95% kernel density of dive (>5 m) locations, overlapped partially between the two species (26.4 and 68.5% of the area overlapped for chinstrap and gentoo penguins, respectively). However, the core foraging area, estimated as the 50% kernel density, was mostly separate (12.8 and 25.0% of the area overlapped for chinstrap and gentoo penguins, respectively). Chinstrap penguins tended to use off-shelf (water depth > 200 m) regions (77% of the locations for dives >5 m), whereas gentoo penguins mainly used on-shelf (water depth < 200 m) areas (71% of dive locations). The data on foraging locations, diving behavior, and bathymetry indicated that gentoo penguins often performed benthic dives (28% of dives >5 m), whereas chinstrap penguins almost always used the epipelagic/mid-water layer (96% of dives >5 m). Diving parameters such as diving bottom duration or diving efficiency differed between the species, reflecting differences in the use of foraging habitat. The diving parameters also suggested that the on-shelf benthic layer was profitable foraging habitat for gentoo penguins. Conversely, the relationship between trip duration, date, and stomach content mass suggested that the chinstrap penguins went further from the colony to forage as the season progressed, possibly reflecting a reduction in prey availability near the colony. Our results suggest that chinstrap and gentoo penguins segregated their foraging habitat in the Antarctic coastal marine environment, possibly due to inter- and intra-specific competition for common prey resources.  相似文献   

18.
Electronic tagging and remotely sensed oceanographic data were used to determine the oceanographic habitat use and preferences of Atlantic bluefin tuna (Thunnus thynnus L.) exhibiting behaviors associated with breeding in the Gulf of Mexico (GOM). Oceanographic habitats used by 28 Atlantic bluefin tuna exhibiting breeding behavior (259 days) were compared with available habitats in the GOM, using Monte Carlo tests and discrete choice models. Habitat utilization and preference patterns for ten environmental parameters were quantified: bathymetry, bathymetric gradient, SST, SST gradient, surface chlorophyll concentration, surface chlorophyll gradient, sea surface height anomaly, eddy kinetic energy, surface wind speed, and surface current speed. Atlantic bluefin tuna exhibited breeding behavior in the western GOM and the frontal zone of the Loop Current. Breeding areas used by the bluefin tuna were significantly associated with bathymetry, SST, eddy kinetic energy, surface chlorophyll concentration, and surface wind speed, with SST being the most important parameter. The bluefin tuna exhibited significant preference for areas with continental slope waters (2,800–3,400 m), moderate SSTs (24–25 and 26–27°C), moderate eddy kinetic energy (251–355 cm2 s−2), low surface chlorophyll concentrations (0.10–0.16 mg m−3), and moderate wind speeds (6–7 and 9–9.5 m s−1). A resource selection function of the bluefin tuna in the GOM was estimated using a discrete choice model and was found to be highly sensitive to SST. These habitat utilization and preference patterns exhibited by breeding bluefin tuna can be used to develop habitat models and estimate the probable breeding areas of bluefin tuna in a dynamic environment.  相似文献   

19.
Seasonally breeding predators, which are limited in the time available for provisioning young at a central location, and by the fasting abilities of the young, are likely to maximize energy delivery to the young by maximizing the rate of energy delivery averaged over the whole period of investment. Reduction in food availability or increased foraging costs will alter the optimal behavior of individuals. This study examined the behavioral adaptations of a diving predator, the Antarctic fur seal, to increased foraging costs during lactation. One group of mothers (n=5, treatment) was fitted with additional drag to increase the cost of transport in comparison with a control group (n=8). At the scales of the individual dives, the treatment group made more shorter, shallower (< 30 m) dives. Compensation for slower swimming speeds was achieved by diving at a steeper angle. Overall, diving behavior conformed to several specific theoretical predictions but there were also departures from theory, particularly concerning swimming speed during diving. Diving behavior appears to be adjusted to maximize the proportion of time spent at the bottom of dives. At the scale of diving bouts, no difference was observed between the treatment and control groups in terms of the frequency and duration of bouts and there was also no difference between the two groups in terms of the proportion of time spent diving. At the scale of complete foraging cycles, time taken to return to the pup was significantly longer in the treatment group but there was no difference in the rate of delivery of energy (measured from pup growth rate) to the pups in each group. Since mothers in the treatment group did not use significantly more body reserves, we conclude that behavioral adjustments at the scale of individual dives allowed mothers in the treatment group to compensate for the additional foraging costs. Pup growth rate appears to be less sensitive to the foraging conditions experienced by mothers than foraging trip duration. Received: 14 June 1996 / Accepted after revision: 16 November 1996  相似文献   

20.
Fifteen yellow-bellied sea snakes,Pelamis platurus, fitted with pressure-sensitive ultrasonic transmitters, were tracked in the Gulf of Panamá during 1983–1985. Snakes spent up to 99.9% ( = 87%) of the tracking time under water and dived to 50 m. The maximum voluntary submergence time observed was 213 min, and of 202 complete dives logged, 19 exceeded 90 min. Dive durations of tracked snakes were typically longer than expected, based upon their estimated body-oxygen stores, and some were even longer than the reported survival times of forceably submerged snakes. Snakes, however, dived repeatedly and did not spend long periods at the surface between dives, suggesting that they did not develop an oxygen deficit during diving. Diving snakes may be able to avoid anaerobiosis by having a reduced metabolic rate, an enhanced rate of cutaneous oxygen uptake, or both. Surface conditions and subsurface temperatures influence the diving behavior ofP. platurus. Laboratory experiments in Panamá indicated that a larger number of snakes were submerged when surface water was turbulent. During February and March, the period of dry season upwelling in the Gulf of Panamá, sea snakes were found to avoid cooler, subsurface water and to make significantly shallower dives: mean maximum depth 6:8 m (n=76) in contrast to a mean maximum depth of 15.1 m (n=147) during the wet season. The dives during the dry season tended to be of shorter duration, with 44% lasting less than 15 min, compared to only 19% of the dives recorded during the wet season being completed in less than 15 min. General avoidance of subsurface temperatures cooler than 19°C was confirmed by laboratory experiments in the 10 m-deep tank at Scripps Institution of Oceanography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号