首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Habitat-specific cues play an important role in orientation for animals that move through a mosaic of habitats. Environmental cues can be imprinted upon during early life stages to guide later return to adult habitats, yet many species must orient toward suitable habitats without previous experience of the habitat. It is hypothesized that multiple sensory cues may enable animals to differentiate between habitats in a sequential order relevant to the spatial scales over which the different types of information are conveyed, but previous research, especially for marine organisms, has mainly focused on the use of single cues in isolation. In this study, we investigated novel habitat selection through the use of three different sensory modalities (hearing, vision, and olfaction). Our model species, the French grunt, Haemulon flavolineatum, is a mangrove/seagrass-associated reef fish species that makes several habitat transitions during early life. Using several in situ and ex situ experiments, we tested the response of fish toward auditory, olfactory, and visual cues from four different habitats (seagrass beds, mangroves, rubble, and coral reef). We identified receptivity to multiple sensory cues during the same life phase, and found that different cues induced different reactions toward the same habitat. For example, early-juvenile fish only responded to sound from coral reefs and to chemical cues from mangroves/seagrass beds, while visual cues of conspecifics overruled olfactory cues from mangrove/seagrass water. Mapping these preferences to the ecology of ontogenetic movements, our results suggest sequential cue use would indeed aid successful orientation to novel key habitats in early life.  相似文献   

2.
Fishes using mangrove (Avicennia marina) and mudflat habitat were sampled using three different types of gear (seine, fyke, and gill nets) at three sites within each of two large embayments through time (quarterly) between January 2002 and November 2002. At least 41 species of fish were sampled, of which 78% were marine, 17% were estuarine, and 5% were freshwater. Juveniles were sampled in 41% of the species, and 5 and 6 species occurred exclusively in mangrove and mudflat habitats, respectively. The assemblage structure of fishes varied significantly between habitats (for both fyke and seine catches) and between spring and summer (seine catches), but only in one bay. Most of the variability between habitats and times of the year could be explained by differences in abundances of atherinids, mugulids, gobiids, tetraodontids, pleuronectids, and clupeids. Fyke nets sampled mainly juvenile and smaller species of fish. Fish abundance was always greater in mangroves than mudflats (but significantly so at four of the six study sites) and varied significantly between times of the year at one site, while the number of species varied significantly between times of the year at three sites. Gill nets sampled mostly adult/subadult fishes and abundances were greater in mudflats than mangroves at two sites, and in mangroves over mudflats at one site, while species abundance varied between times of the year at two sites. The seine net sampled mainly early post-settlement and small (<20 mm) fishes, more species of which were sampled in mudflat than mangrove during winter and spring, whereas the opposite pattern occurred in summer and autumn. The number of fish sampled with the seine net only varied significantly between habitats in one embayment during summer and spring, when they were larger and smaller, respectively, in mangroves than mudflats. Mangrove habitat in temperate Australian waters supports a richer juvenile fish assemblage than adjacent mudflats, but there is little difference between habitats for the subadult/adult assemblage. Ultimately, the value of mangrove habitats to fishes depends strongly on when and where (bays and sites within bays) the study is done.Communicated by M.S. Johnson, Crawley  相似文献   

3.
Mangrove forests and seagrass beds frequently occur as adjacent habitats in the temperate waters of southeastern Australia. At low tide when fish cannot occupy mangroves they might utilise adjacent habitats, including seagrass. We first sampled small fish from seagrass beds close to and far from mangroves in the Pittwater estuary, NSW, Australia. Seagrass beds close to mangroves had a greater density of fish species than beds far from mangroves (close: mean 16.0 species net−1, SE 1.0; far: 13.2, 1.3; P < 0.05). In particular, juvenile fish were in greater densities near to than far from mangroves (close: 5.3, 0.4; far: 3.1, 0.4; P < 0.05). We then sampled the mangrove forests during the high tide and seagrass beds during the low tide, in beds along a continuum of distances from mangroves. Multivariate analysis showed that fish assemblages differed with distance from mangroves, and the differences were attributed to the composition of the fish assemblage (i.e. presence/absence of fish species), not the abundances of individual species. In particular, fish that utilise mangrove forests at high tide were found in greater species densities and species richness in seagrass nearer to mangroves. A negative relationship was found between the density of mangrove-utilising fish species and the distance of the bed from mangroves (R 2 = 0.37, P < 0.05). This confirms the important connectivity between mangroves and seagrass for fish in temperate Australian waters.  相似文献   

4.
Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum‐type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat‐forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. Definición de Hábitats Críticos para Peces Arrecifales Amenazados y Endémicos Mediante un Método Multivariado  相似文献   

5.
Abstract: Habitat maps are often the core spatially consistent data set on which marine reserve networks are designed, but their efficacy as surrogates for species richness and applicability to other conservation measures is poorly understood. Combining an analysis of field survey data, literature review, and expert assessment by a multidisciplinary working group, we examined the degree to which Caribbean coastal habitats provide useful planning information on 4 conservation measures: species richness, the ecological functions of fish species, ecosystem processes, and ecosystem services. Approximately one‐quarter to one‐third of benthic invertebrate species and fish species (disaggregated by life phase; hereafter fish species) occurred in a single habitat, and Montastraea‐dominated forereefs consistently had the highest richness of all species, processes, and services. All 11 habitats were needed to represent all 277 fish species in the seascape, although reducing the conservation target to 95% of species approximately halved the number of habitats required to ensure representation. Species accumulation indices (SAIs) were used to compare the efficacy of surrogates and revealed that fish species were a more appropriate surrogate of benthic species (SAI = 71%) than benthic species were for fishes (SAI = 42%). Species of reef fishes were also distributed more widely across the seascape than invertebrates and therefore their use as a surrogate simultaneously included mangroves, sea grass, and coral reef habitats. Functional classes of fishes served as effective surrogates of fish and benthic species which, given their ease to survey, makes them a particularly useful measure for conservation planning. Ecosystem processes and services exhibited great redundancy among habitats and were ineffective as surrogates of species. Therefore, processes and services in this case were generally unsuitable for a complementarity‐based approach to reserve design. In contrast, the representation of species or functional classes ensured inclusion of all processes and services in the reserve network.  相似文献   

6.
Daytime sampling of mangrove and seagrass (Halophila/Halodule community) habitats every 7 wk at Alligator Creek, Queensland, Australia, over a period of 13 mo (February 1985–February 1986) using two types of seine net, revealed distinct mangrove and seagrass fish and crustacean faunas. Total abundance of fish and relative abundance of small and large fish also varied between habitats and seasonally. Post-larval, juvenile and small adult fish captured with a small seine-net (3 mm mesh) were significantly more abundant (4 to 10 times) in the mangrove habitat throughout the 13 mo of sampling. Mangrove fish abundance showed significant seasonality, greatest catches being recorded in the warm, wet-season months of the year. Relative abundances of larger fish (captured in a seine net with 18 mm mesh) in the two habitats varied throughout the year, but did not show a seasonal pattern. At the same site, small crustaceans were significantly more abundant in the mangroves in all but one dryseason sample. Similar comparisons for three riverine sites, sampled less frequently, in the dry and wet seasons of 1985 and 1986, respectively, showed that in general mangrove habitats had significantly more fish per sample, although the relative abundance of fish in mangroves and other habitats changed with season. Crustacean catches showed a similar pattern, except that densities among sites changed with season. Fish and crustacean abundance in mangroves varied among sites, indicating that estuaries differ in their nursery-ground value. The juveniles of two commercially important penaeid prawn species (Penaeus merguiensis and Metapenaeus ensis) were amongst the top three species of crustaceans captured in the study, and both were significantly more abundant in the mangrove habitat. By contrast, mangroves could not be considered an important nursery for juveniles of commercially important fish species in northern Australia. However, based on comparisons of fish catches in other regions, the results of the present study indicate the importance of mangroves as nursery sites for commercially exploited fish stocks elsewhere in South-East Asia. Contribution No. 378 from the Australian Institute of Marine Science  相似文献   

7.
Caribbean seagrass beds are important feeding habitats for so-called nocturnally active zoobenthivorous fish, but the extent to which these fishes use mangroves and seagrass beds as feeding habitats during daytime remains unclear. We hypothesised three feeding strategies: (1) fishes feed opportunistically in mangroves or seagrass beds throughout the day and feed predominantly in seagrass beds during night-time; (2) fishes start feeding in mangroves or seagrass beds during daytime just prior to nocturnal feeding in seagrass beds; (3) after nocturnal feeding in seagrass beds, fishes complete feeding in mangroves or seagrass beds during the morning. We studied the effect of habitat type, fish size, social mode and time of day on resting and feeding behaviour of large juvenile (5–10 cm) and sub-adult (10–15 cm) Haemulon flavolineatum in mangroves and seagrass beds during daytime. Sub-adults occurred in mangroves only, spent most time on resting, and showed rare opportunistic feeding events (concordant with strategy 1), regardless of their social mode (solitary or schooling). In contrast, large juveniles were present in both habitat types and solitary fishes mainly foraged, while schooling fishes mainly rested. Exceptions were small juveniles (±5 cm) in seagrass beds which foraged intensively while schooling. Large juveniles showed more feeding activity in seagrass beds than in mangroves. In both habitat types, they showed benthic feeding, whereas pelagic feeding was observed almost exclusively in the seagrass beds. In both habitat types, their feeding activity was highest during 8:00–10:30 hours (concordant with strategy 3), and for seagrass fishes, it was also high during 17:30–18:30 hours (concordant with strategy 2). The study shows that both mangroves and seagrass beds provide daytime feeding habitats for some life-stages of H. flavolineatum, which is generally considered a nocturnal feeder.  相似文献   

8.
Chondrilla nucula is a common Caribbean demosponge that grows in a range of habitats, from coral reefs to mangrove swamps. On reefs, C. nucula grows as a thinly encrusting sheet, while in mangrove habitats it surrounds submerged mangrove roots as fleshy, lobate clumps. Previous feeding experiments using predatory reef fish revealed a high degree of variability in the chemical defenses of C. nucula. The present study was undertaken to determine whether a relationship exists between habitat, growth form, and chemical defense of C. nucula. Both laboratory and field feeding-assays of crude extracts confirmed that C. nucula possesses a chemical defense with high intercolony variability, but there was no significant variation in feeding deterrency between reef and mangrove habitats at either geographic location (Bahamas and Florida). Extracts of C. nucula collected during September and October 1994 from the Bahamas were significantly more deterrent than those collected during August 1993, May 1994, and May 1995 from Florida, and extracts of these spring and summer Florida collections were more deterrent than extracts of C. nucula collected in December 1994 and February 1995 in the same locations. There was no evidence that deterrent compounds were concentrated in the surface tissues of the sponge, or that chemical defense could be induced by simulated predation. Laboratory and field assays of the fractionated crude extract revealed that feeding deterrency was confined to the most polar metabolites in the extract. Field transplants were used to determine whether predation influenced the growth form of C. nucula. Uncaged sponges transplanted from the mangrove to the reef were readily consumed by spongivorous reef fishes. Lobate mangrove sponges became thinner after being caged on the reef for 3 mo, but encrusting reef sponges did not become thicker after being caged in the mangroves for the same period of time. Reef sponges that were caged for 3 to 15 mo thickened by only a small amount (<1 mm) compared to uncaged and open-caged (i.e. in cages lacking tops) sponges. Simulated bite marks on both reef and mangrove sponges were repaired at a rapid rate (0.8 to 1.6 mm d−1). Fish predation has an important impact on the distribution and abundance of C. nucula, but the thin growth form common to reef environments may be more the result of hydrodynamics than of grazing by spongivorous fishes. Received: 6 October 1997 / Accepted: 19 March 1998  相似文献   

9.
Although predation by fishes is thought to structure benthic invertebrate communities on coral reefs, evidence to support this claim has been difficult to obtain. We deployed an array of eight sponge species on Conch Reef (16 m depth) off Key Largo, Florida, USA, and used a remote video-camera to record fish activity near the array continuously during five daylight periods (6 h for 1 d, at least 11.5 h for 4 d) and one night period (11 h). Of the eight sponge species, four were from adjacent reefs (Agelas wiedenmayeri, Geodia neptuni, Aplysina fistularis, and Pseudaxinella lunaecharta), and four were from a nearby mangrove habitat (Chondrosia collectrix, Geodia gibberosa, Halichondria sp., andTedania ignis). Each species of reef sponge was chosen to match the corresponding mangrove species in form and color (black, brown, yellow, and red, respectively). Predation events only occurred during daylight hours. Tallies of the number of times fishes bit sponges revealed intense feeding by the expected species of sponge-eating fishes, such as the angelfishHolacanthus bermudensis, H. tricolor, andPomacanthus arcuatus, the cowfishLactophrys quadricornis, and the filefishCantherhines pullus, but surprisingly also by the parrotfishSparisoma aurofrenatum andS. chrysopterum. Of 35 301 bites recorded, 50.8% were taken by angelfish, 34.8% by parrotfish, and 13.7% by trunkfish and filefish. Mangrove sponges were preferred by all reef fishes; 96% of bites were taken from mangrove species, with angelfish preferringChondrosia collectrix and parrotfish preferringGeodia gibberosa. Fishes often bit the same sponge repetitively, and frequently consumed entire samples within 30 min of their deployment. Sponge color did not influence fish feeding. Two of the four mangrove sponge-species deployed on the array were also found living in cryptic habitats on adjacent reefs and were rapidly consumed by fishes when exposed. Our results demonstrate the importance of fish predation in controlling the distribution of sponges on Caribbean reefs.  相似文献   

10.
P. Baelde 《Marine Biology》1990,105(1):163-173
The structures of fish assemblages in twoThalassia testudinum beds in Guadeloupe, French West Indies, one adjacent to mangroves and the other adjacent to coral reefs, were compared between January 1983 and May 1984. The aim of the study was to compare the influences of mangroves and coral reefs on the utilization of seagrass beds by fishes through examination of species composition, catch rate, size of fishes and temporal changes. The two fish assemblages were similar in terms of the number of species they had in common (nearly 44% of the total number of species collected) and the great abundance of juveniles. They both comprised species that usually inhabit other habitats, i.e., estuaries, open waters or coral reefs. Estuary-associated species (e.g. Gerreidae) were the most abundant species in the seagrass bed near the mangroves, while small pelagic species (e.g. Clupeidae) were the most abundant species in the seagrass bed near the coral reefs. The seagrass bed near the mangroves was preferentially utilized as a nursery area by small juveniles of various species (e.g. Clupeidae, Sparidae, Gerreidae, and at least one coral reef species,Ocyurus chrysurus). The abundance of these species varied frequently, suggesting successive arrivals and departures of juveniles over time. The seagrass bed near the coral reefs was characteristically utilized by fishes that are more able to avoid predation, i.e., fishes that forage over seagrass beds at night and shelter in or near the coral reefs during the day (large juveniles of coral reef species and adults of schooling pelagic species, respectively). The constant migrations of these fishes between the coral reefs and seagrass beds explained the relative stability of the structure of the fish assemblage in the seagrass bed over time. Thus, the two seagrass beds were not equivalent habitats for fishes. The distinct ecological influences of the mangroves (as a nursery for small juveniles) and coral reefs (as a shelter for larger fishes) on the nearby seagrass beds was clearly reflected by the distinct utilizations of these seagrass beds by fishes.  相似文献   

11.
The aim of the study was to provide comparable estimates of abundance of herbivorous reef fishes at temperate and tropical localities using a standardized methodology. Faunas of herbivorous fish were sampled on the rocky reefs of temperate northern New Zealand and on the coral reefs of the northern Great Barrier Reef (GBR), Australia, and the San Blas Archipelago in the Caribbean. A pilot study established the most appropriate habitat setting and the scale and magnitude of replication for the sampling program in temperate waters. Herbivorous fishes, including members of families endemic to the southern hemisphere (Odacidae and Aplodactylidae), were most abundant in turbulent, shallow water (0 to 6 m) and had patchy distributions within this habitat. A hierarchical sampling program using 10-min transect counts within the 0 to 6 m depth stratum examined abundance patterns at a range of spatial scales including mainland and island coasts, localities separated by up to 100 km and sites separated by up to 10 km. This program identified a characteristic fauna of seven species of herbivorous fishes with mean total abundances ranging from 23 to 30 individuals per 10-min transect. Species composition of the fauna varied between islands and coasts. A similar methodology was used to sample the major families of herbivorous fish in a number of sites in each of the tropical regions. These sampling programs revealed a fauna dominated by acanthurids and scarids in both the GBR and Caribbean localities. Estimates of abundance from these regions were similar, with a mean of 108 individuals recorded on the GBR and 129 per 10-min transect in the Caribbean. Species richness varied between each region, with 44 taxa recorded from the GBR and 11 from the Caribbean. Abundances of temperate water herbivores in New Zealand were found to be 75 to 80% lower than those recorded from shallow water habitats sampled on coral reefs. This was not related to species richness, since both New Zealand and the Caribbean locality had patterns of low richness. We suggest that the differences in abundance found by our study between temperate and tropical regions are not restricted to herbivorous fishes, but are representative of general latitudinal trends in reef fish faunas. Received: 4 November 1996 / Accepted: 15 December 1996  相似文献   

12.
R. M. Morton 《Marine Biology》1990,105(3):385-394
The fishes occurring in a subtropical mangrove (Avicennia marina) area in Moreton Bay, Australia, were studied for one year (November 1987 to November 1988, inclusive). Fishes within the mangroves were sampled using a block net, whilst those in adjacent waters were sampled using seine and gill nets. Forty six percent of the species, 75% of the number of fishes and 94% of the biomass taken during the study (all methods combined) were of direct importance to regional fisheries. The fish community utilising the habitat within the mangrove forest differed from that occurring in adjacent waters in terms of density, standing crop, species composition and diversity-index values. Standing-crop estimates for the fishes occurring within the mangroves (study period mean ± SD = 25.3 ± 20.4 g m–2) were amongst the highest recorded values for estuarine areas whilst those for adjacent waters (2.9±2.3 g m–2) were comparable to those of other estuarine studies.  相似文献   

13.
Bonin MC  Almany GR  Jones GP 《Ecology》2011,92(7):1503-1512
Disturbance can result in the fragmentation and/or loss of suitable habitat, both of which can have important consequences for survival, species interactions, and resulting patterns of local diversity. However, effects of habitat loss and fragmentation are typically confounded during disturbance events, and previous attempts to determine their relative significance have proved ineffective. Here we experimentally manipulated live coral habitats to examine the potential independent and interactive effects of habitat loss and fragmentation on survival, abundance, and species richness of recruitment-stage, coral-associated reef fishes. Loss of 75% of live coral from experimental reefs resulted in low survival of a coral-associated damselfish and low abundance and richness of other recruits 16 weeks after habitat manipulations. In contrast, fragmentation had positive effects on damselfish survival and resulted in greater abundance and species richness of other recruits. We hypothesize that spacing of habitat through fragmentation weakens competition within and among species. Comparison of effect sizes over the course of the study period revealed that, in the first six weeks following habitat manipulations, the positive effects of fragmentation were at least four times stronger than the effects of habitat loss. This initial positive effect of fragmentation attenuated considerably after 16 weeks, whereas the negative effects of habitat loss increased in strength over time. There was little indication that the amount of habitat influenced the magnitude of the habitat fragmentation effect. Numerous studies have reported dramatic declines in coral reef fish abundance and diversity in response to disturbances that cause the loss and fragmentation of coral habitats. Our results suggest that these declines occur as a result of habitat loss, not habitat fragmentation. Positive fragmentation effects may actually buffer against the negative effects of habitat loss and contribute to the resistance of reef fish populations to declines in coral cover.  相似文献   

14.
Successful settlement of pelagic fish larvae into benthic juvenile habitats may be enhanced by a shortened settlement period, since it limits larval exposure to predation in the new habitat. Because the spatial distribution of marine fish larvae immediately prior to settlement versus during settlement was unknown, field experiments were conducted at Ishigaki Island (Japan) using light trap sampling and underwater visual belt transect surveys to investigate the spatial distribution patterns of selected pre- and post-settlement fishes (Acanthuridae, Pomacentridae, Chaetodonidae and Lethrinidae) among four habitats (seagrass bed, coral rubble, branching coral and tabular coral). The results highlighted two patterns: patterns 1, pre- and post-settlement individuals showing a ubiquitous distribution among the four habitats (Acanthuridae) and pattern 2, pre-settlement individuals distributed in all habitats, but post-settlement individuals restricted to coral (most species of Pomacentridae and Chaetodontidae) or seagrass habitats (Lethrinidae). The first pattern minimizes the transition time between the larval pelagic stage and acquisition of a benthic reef habitat, the latter leading immediately to a juvenile lifestyle. In contrast, the second pattern is characterized by high settlement habitat selectivity by larvae and/or differential mortality immediately after settlement.  相似文献   

15.
The value of mangroves for fish species is usually explained in terms of high food abundance or shelter against predators as a result of high turbidity and structural complexity. In a field experiment, artificial mangrove units (AMUs) were designed as open cages, each of which was provided with a different degree of structural complexity and shade. Fish species that were attracted to the AMUs were identified and counted and the effects of shade and structural complexity, as well as the interaction between the two factors, were tested. Diurnal fish showed a preference for the greatest structured complexity and for a moderate increase in shade. Two nocturnal species common in local mangroves as well as seagrass beds showed statistically significant effects: densities of Haemulon sciurus were positively related to both shade and structural complexity, whereas only shade had a significant positive effect on densities of Ocyurus chrysurus. The experiment indicated that the attractiveness of mangrove vegetation for H. sciurus may be influenced by the structural complexity of the habitat as well as by the degree of shade, and that both factors are equally and separately important. Individuals of O. chrysurus that are attracted to mangroves are more likely to be influenced by the presence of shade than by the degree of structural complexity. The data thus indicated that the positive relationship between fish densities in mangrove habitats and the degree of shade and structural complexity, or both, is species-specific.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

16.
Understanding whether assemblages of species respond more strongly to bottom-up (availability of trophic resources or habitats) or top-down (predation pressure) processes is important for effective management of resources and ecosystems. We determined the relative influence of environmental factors and predation by humans in shaping the density, biomass, and species richness of 4 medium-bodied (10–40 cm total length [TL]) coral reef fish groups targeted by fishers (mesopredators, planktivores, grazer and detritivores, and scrapers) and the density of 2 groups not targeted by fishers (invertivores, small fish ≤10 cm TL) in the central Philippines. Boosted regression trees were used to model the response of each fish group to 21 predictor variables: 13 habitat variables, 5 island variables, and 3 fishing variables (no-take marine reserve [NTMR] presence or absence, NTMR size, and NTMR age). Targeted and nontargeted fish groups responded most strongly to habitat variables, then island variables. Fishing (NTMR) variables generally had less influence on fish groups. Of the habitat variables, live hard coral cover, structural complexity or habitat complexity index, and depth had the greatest effects on density, biomass, and species richness of targeted fish groups and on the density of nontargeted fishes. Of the island variables, proximity to the nearest river and island elevation had the most influence on fish groups. The NTMRs affected only fishes targeted by fishers; NTMR size positively correlated with density, biomass, and species richness of targeted fishes, particularly mesopredatory, and grazing and detritivorous fishes. Importantly, NTMRs as small as 15 ha positively affected medium-bodied fishes. This finding provides reassurance for regions that have invested in small-scale community-managed NTMRs. However, management strategies that integrate sound coastal land-use practices to conserve adjacent reef fish habitat, strategic NTMR placement, and establishment of larger NTMRs will be crucial for maintaining biodiversity and fisheries.  相似文献   

17.
Mangrove estuaries in the Solomon Islands are well developed, but are small and isolated from each other by extensive fringing coral reef lagoons. A total of 136 species of fish were recorded from 13 estuaries (6 estuaries in Kolombangara, 3 in New Georgia, 3 in Rendova and 1 in the Florida Group); none contained more than 50 species. Sampling took place during five 3 wk expeditions from 1986 to 1988. The mean biomass of 11.60 g m–2 is comparable with that of similar estuaries in northern Australia. Cluster-analysis revealed two patterns of fish species composition. The first group, in which Gobiidae were the most numerous taxon, inhabited soft, muddy-bottom estuaries. The second group, dominated by Pomacentridae, lived in hard-bottom, log-strewn estuaries. The role of the estuaries as nursery grounds for coral reef species was assessed and found to be insignificant, but they are used as feeding grounds by mobile piscivorous species. The species composition of Solomon Island estuaries was compared with that of other Indo-Pacific estuaries. No endemic species were found and the fauna is typical of such mangrove systems throughout the region. However, several taxa that are common in Australia or New Guinea were not found, notably Ariidae, Centropomidae,Pomadasys, and Sciaenidae. These absentees, and the fish fauna as a whole, are discussed in relation to the position of the Solomon Islands at the western edge of the Pacific Plate, the effects of deep-ocean trenches, the recent geological origin of the islands, and possible methods of colonisation from nearby mangroves in Australia and New Guinea. The importance of larval durations and dispersal to colonisation are discussed in relation to oceanic circulation patterns in the Solomon Sea.  相似文献   

18.
L. G. Abele 《Marine Biology》1976,38(3):263-278
The community structure of the decapod crustacean fauna of 7 tropical, shallowwater, marine habitats (sandy beaches, mangrove swamps and rocky intertidal habitats on both the Pacific and Caribbean coasts of Panama, and Pocillopora damicornis coral habitat of the Bay of Panama) were examined and analyzed for species composition and relative abundances. Collections from the 7 habitats yielded 4361 individuals, representing 236 species. The number of species per habitat was (Pacific, Caribbean): sandy beach (16, 7); mangrove (20, 17); P. damicornis (53); rocky intertidal (78, 67). There were more species represented by more individuals in the Pacific habitats. An index of faunal similarity was calculated for each pair (Pacific-Caribbean) of habitats. This index is the number of ecologically similar congeneric species which occurred in both habitats expressed as a percentage of the total number of species present in the pair of habitats. For the sandy beach communities there were three Pacific species which were similar to three Caribbean species, a similarity of 6/23 or 26%. The index of similarity for the mangrove communities is 54% and for the rocky intertidal communities it is 37%. The P. damicornis community has affinities with the Pacific rocky intertidal community (18%), with that of the Caribbean rocky intertidal (16%) and with that of Indo-West Pacific pocilloporid corals (20%). A few specialized species dominated each of the communities. The habitats and the number of species accounting for over half of the individuals present are (Pacific, Caribbean): sandy beach (1, 1); mangrove (4, 4); P. damicornis (5); and rocky intertidal (3, 6). Most of the species in each community were represented by one or a few individuals.  相似文献   

19.
Within the Caribbean millions of queen conch (Strombus gigas Linnaeus) are harvested each year and shells discarded randomly or as middens. Fish use of discarded conch shells was investigated in four different habitat types: sand, seagrass beds, mangrove forests, and coral reefs. The study was carried out in the waters off South Caicos, Turks and Caicos Islands (TCI), between October 2003 and January 2004. The density of discarded shells was greatest near coral reefs; however, the percentage of shells occupied by adult fish was higher in isolated shells on sand and in mangrove habitats. Juvenile fish also showed a preference for sheltering in conch shells relative to other microhabitat types on sandy plains and in mangrove and seagrass habitats. Differences in use of single shells by fish in different habitats were attributed to differences in piscivore abundance and habitat complexity. Although not all isolated shells were occupied by fish, all conch middens deposited by fishermen had fish inhabitants. Examination of fish use of conch middens in three habitat types and conch piles of one, three, and five shells constructed on sand found both fish diversity and abundance increased on conch middens of increasing size. This study suggests that disposal of conch shells as large middens in habitats of low complexity will increase the amount of shelter present and may enhance fish populations in these habitats.Communicated by J.P. Grassle, New Brunswick  相似文献   

20.
Overholtzer-McLeod KL 《Ecology》2006,87(4):1017-1026
The spatial configuration of habitat patches can profoundly affect a number of ecological interactions, including those between predators and prey. I examined the effects of reef spacing on predator-prey interactions within coral-reef fish assemblages in the Bahamas. Using manipulative field experiments, I determined that reef spacing influences whether and how density-dependent predation occurs. Mortality rates of juveniles of two ecologically dissimilar species (beaugregory damselfish and yellowhead wrasse) were similarly affected by reef spacing; for both species, mortality was density dependent on reef patches that were spatially isolated (separated by 50 m), and density independent on reef patches that were aggregated (separated by 5 m). A subsequent experiment with the damselfish demonstrated that a common resident predator (coney) caused a substantial proportion of the observed mortality, independent of reef spacing. Compared to isolated reefs, aggregated reefs were much more likely to be visited by transient predators (mostly yellowtail snappers), regardless of prey density, and on these reefs, mortality rates approached 100% for both prey species. Transient predators exhibited neither an aggregative response nor a type 3 functional response, and consequently were not the source of density dependence observed on the isolated reefs. These patterns suggest that resident predators caused density-dependent mortality in their prey through type 3 functional responses on all reefs, but on aggregated reefs, this density dependence was overwhelmed by high, density-independent mortality caused by transient predators. Thus, the spatial configuration of reef habitat affected both the magnitude of total predation and the existence of density-dependent mortality. The combined effects of the increasing fragmentation of coral reef habitats at numerous scales and global declines in predatory fish may have important consequences for the regulation of resident fish populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号