首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Diffusion experiments through hardened cement pastes (HCP) using tritiated water (HTO) and 22Na(+), considered to be conservative tracers, have been carried out in triplicates in a glove box under a controlled nitrogen atmosphere. Each experiment consisted of a through-diffusion test followed by an out-diffusion test. The experimental data were inversely modelled applying an automated Marquardt-Levenberg procedure. The analysis of the through-diffusion data allowed the extraction of values for the effective diffusion coefficients, D(e), and the rock capacity factor, alpha. Good agreement between measured and calculated tracer breakthrough curves was achieved using both a simple diffusion model without sorption and a diffusion/linear sorption model. The best-fit K(d)-values were found to be consistent with R(d)-values measured in previous batch-sorption experiments. The best-fit values from the through-diffusion tests were then used to predict the results of subsequent out-diffusion experiments. Good agreement between experimental data and predictions was achieved only for the case of linear sorption. Isotopic exchange can only partially account for both the amount of tracer taken up in the batch-sorption tests and the measured retardation in the diffusion experiments and, hence, additional mechanisms have to be invoked to explain the data.  相似文献   

2.
Literature data for anion diffusion in compacted swelling clays contain systematic inconsistencies when the results of through-diffusion tests are compared with those of out-diffusion or tracer profile analysis. In the present work we investigated whether these inconsistencies can be explained by taking into account heterogeneities in the compacted samples; in particular increased porosities at the clay boundaries. Based on the combined results of out-diffusion, tracer profile analysis and the spatial distribution of the electrolyte anion in the clay, we conclude that the inconsistencies can indeed be resolved by taking into account a heterogeneous distribution of the total and the anion-accessible porosity. This, by definition, leads to a position dependence of the effective diffusion coefficient. Neglecting these effects results in a rather subordinate systematic error in the determination of effective diffusion coefficients of anions from through-diffusion tests with clay thicknesses in the centimetre range. However, stronger errors in terms of absolute values and conceptual interpretation may be introduced in out-diffusion tests and profile analyses of the diffused tracer. We recommend that anion diffusion tests should be accompanied by measurements of the total and anion-accessible porosity as a function of position in the direction of diffusion.  相似文献   

3.
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an axisymmetric diffusion experiment coupled with tracer profiling may be a promising approach to estimate of diffusion anisotropy of sedimentary rocks.  相似文献   

4.
A mathematical model describing the dissolution of nuclear glass directly disposed in clay combines a first-order dissolution rate law with the diffusion of dissolved silica in clay. According to this model, the main parameters describing the long-term dissolution of the glass are ηR, the product of the diffusion accessible porosity η and the retardation factor R, and the apparent diffusion coefficient Dapp of dissolved silica in clay.For determining the migration parameters needed for long-term predictions, four Through-Diffusion (T-D) experiments and one percolation test have been performed on undisturbed clay cores. In the Through-Diffusion experiments, the concentration decrease after injection of 32Si (radioactive labelled silica) was measured in the inlet compartment. At the end of the T-D experiments, the clay cores were cut in thin slices and the activity of labelled silica in each slice was determined. The measured activity profiles for these four clay cores are well reproducible.Since no labelled silica could be detected in the outlet compartments, the Through-Diffusion experiments are fitted by two In-Diffusion models: one model assuming linear and reversible sorption equilibrium and a second model taking into account sorption kinetics. Although the kinetic model provides better fits, due to the sufficiently long duration of the experiments, both models give approximately similar values for the fit parameters. The single percolation test leads to an apparent diffusion coefficient value about two to three times lower than those of the Through-Diffusion tests.Therefore, dissolved silica appears to be strongly retarded in Boom Clay. A retardation factor R between 100 and 300 was determined. The corresponding in situ distribution coefficient Kd is in the range 25–75 cm3 g−1. The apparent diffusion coefficient of dissolved silica in Boom Clay is estimated between 2×10−13 and 7×10−13 m2 s−1. The pore diffusion coefficient is in the range from 6×10−11 to 1×10−10 m2 s−1.  相似文献   

5.
Properties related to sorption and transport of organic compounds have been determined on 126 sections of 17 cores taken in an aquifer at Columbus Air Force Base in Columbus, MS. Each core section was homogenized prior to analysis. Organic carbon content (OC), specific surface area (SA), distribution coefficient (Kd) for naphthalene, and particle size distribution were measured on each section. Hydraulic conductivity (Kh) for each section was calculated from the particle size distributions. Kh values obtained were comparable with those from earlier borehole flowmeter and pulse tracer tests. Frequency distributions for all properties were lognormal. The arithmetic means and standard deviations for all samples are: OC=0.028% (+0.031, −0.015), SA=4.02 m2/g (+3.95, −1.99), Kd=0.198 l/kg (+0.195, −0.098), Kh=0.00033 m/s (+0.00051, −0.00020). These standard deviations are asymmetrical about the mean because statistics were calculated using log-transformed data, and antilogarithms then taken to obtain the results in the units of property measurement. Variabilities, expressed as coefficients of variation, were similar for all properties. Correlations between the properties were investigated. A good correlation between naphthalene Kd and OC (r=0.78) was found, and other correlations were weak, thus indicating that organic carbon content may control sorption of nonpolar organic solutes in this low carbon aquifer. Autocorrelation (variogram) analysis indicated that, for all properties, correlation lengths were less than the distance between sample points, which were separated by about 20 m horizontally and 1 m vertically. Separate statistical analysis of two widely separated groups of wells showed the groups similar in all properties, except organic carbon. Large-scale inhomogeneity was not detected, although earlier tracer tests produced irregular plumes indicating inhomogeneity in observed solute transport. Implications of the results to site characterization, in situations where aquifers are heterogeneous on short length scales, are discussed.  相似文献   

6.
Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, Dme, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale Dme values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of Dme to the lab-scale matrix diffusion coefficient, Dm, of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems.Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.  相似文献   

7.
Abstract

Chemical transport in soil is a major factor influencing soil and water contamination. Four soils and turfgrass thatch, representing a wide range of organic carbon OC content were studied to determine sorption Kd and Kf parameters for the insecticides chlorpyrifos and fonofos. The batch equilibrium method was used. The concentration of insecticide was measured in the solution as well as in the solid phase to determine the most accurate sorption data. Four soils and thatch were equilibrated for 24 h at 22 ± 1OC with aqueous insecticide solutions. Four concentrations of the insecticides, each <50% of their respective water solubilities, were selected for the experiments. After extraction with an organic solvent, the concentration of insecticides in the aqueous solution was determined by gas liquid chromatography using electron capture detection for chlorpyrifos, and nitrogen/phosphorus detection for fonofos. Data obtained were fitted to the log and simple linear form of the Freundlich equation. Mass balance Freundlich isotherm exponents n ranged between 0.82 and 0.93 for chlorpyrifos. 0.82 and 1.21 for fonofos, with r2 ≥ 0.97. Koc (percent of organic carbon %OC normalized Sorption coefficient) values were calculated by using experimentally developed Kd and Kf coefficients in relation to OC levels from 0.29 to 34.85%. Kd and Kf coefficients of both insecticides were positively correlated with OC (r2 ≥ 0.96). organic matter OM (r2 0.96), and cation exchange capacity CEC (r2 ≥ 0.90).  相似文献   

8.
Based on the results from detailed structural and petrological characterisation and on up-scaled laboratory values for sorption and diffusion, blind predictions were made for the STT1 dipole tracer test performed in the Swedish Äspö Hard Rock Laboratory. The tracers used were nonsorbing, such as uranine and tritiated water, weakly sorbing 22Na+, 85Sr2+, 47Ca2+and more strongly sorbing 86Rb+, 133Ba2+, 137Cs+.Our model consists of two parts: (1) a flow part based on a 2D-streamtube formalism accounting for the natural background flow field and with an underlying homogeneous and isotropic transmissivity field and (2) a transport part in terms of the dual porosity medium approach which is linked to the flow part by the flow porosity.The calibration of the model was done using the data from one single uranine breakthrough (PDT3). The study clearly showed that matrix diffusion into a highly porous material, fault gouge, had to be included in our model evidenced by the characteristic shape of the breakthrough curve and in line with geological observations.After the disclosure of the measurements, it turned out that, in spite of the simplicity of our model, the prediction for the nonsorbing and weakly sorbing tracers was fairly good. The blind prediction for the more strongly sorbing tracers was in general less accurate. The reason for the good predictions is deemed to be the result of the choice of a model structure strongly based on geological observation. The breakthrough curves were inversely modelled to determine in situ values for the transport parameters and to draw consequences on the model structure applied. For good fits, only one additional fracture family in contact with cataclasite had to be taken into account, but no new transport mechanisms had to be invoked. The in situ values for the effective diffusion coefficient for fault gouge are a factor of 2–15 larger than the laboratory data. For cataclasite, both data sets have values comparable to laboratory data. The extracted Kd values for the weakly sorbing tracers are larger than Swedish laboratory data by a factor of 25–60, but agree within a factor of 3–5 for the more strongly sorbing nuclides. The reason for the inconsistency concerning Kds is the use of fresh granite in the laboratory studies, whereas tracers in the field experiments interact only with fracture fault gouge and to a lesser extent with cataclasite both being mineralogically very different (e.g. clay-bearing) from the intact wall rock.  相似文献   

9.
Sorption of acetamiprid ((E)-N1-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1-methylacetamidine), carbendazim (methyl benzimidazol-2-ylcarbamate), diuron (N-(3,4-dichlorophenyl)-N, N-dimethyl urea) and thiamethoxam (3-(2-chloro-thiazol-5-ylmethyl)-5-methyl-[1,3,5]oxadiazinan-4-ylidene-N-nitroamine) was evaluated in two Brazilian tropical soils, Oxisol and Entisol, from Primavera do Leste region, Mato Grosso State, Brazil. To describe the sorption process, batch experiments were carried out. Linear and Freundlich isotherm models were used to calculate the K d and K f coefficients from experimental data. The K d values were utilized to calculate the partition coefficient normalized to soil organic carbon (K oc ). For the pesticides acetamiprid, carbendazim, diuron and thiamenthoxan the K oc (mL g? 1) values ranged in both soils from 98 – 3235, 1024 – 2644, 145 – 2631 and 104 – 2877, respectively. From the studied pesticides, only carbendazim presented correlation (r2 = 0.82 and p < 0.01) with soil organic carbon (OC) content. Acetamiprid and thiamethoxam showed low sorption coefficients, representing a high risk of surface and ground water contamination.  相似文献   

10.
Geochemical processes leading to either mobilization or retention of radionuclides in an aquifer system are significantly influenced by their interaction with rock, sediment and colloid surfaces. Therefore, a sound safety assessment of nuclear waste disposal requires the elucidation and quantification of those processes. State-of-the-art analytical techniques as e.g. laser- and X-ray spectroscopy are increasingly applied to study solid–liquid interface reactions to obtain molecular level speciation insight.We have studied the sorption of trivalent lanthanides and actinides onto aluminium oxides, hydroxides and purified clay minerals by the time-resolved laser fluorescence spectroscopy and X-ray-absorption spectroscopy. Chemical constitution and structure of surface bound actinides are proposed based on spectroscopic information. Open questions still remain with regard to the exact nature of mineral surface ligands and the mineral/water interface. Similarities of spectroscopic data obtained for M(III) sorbed onto γ-alumina, and clay minerals suggest the formation of very comparable inner-sphere surface complexes such as S–O–An(III)(OH)x(2 − x)(H2O)5 − x at pH > 5. Those speciation data are found consistent with those predicted by surface complexation modelling. The applicability of data obtained for pure mineral phases to actinide sorption onto heterogeneously composed natural clay rock is examined by experiments and by geochemical modelling. Good agreement of experiment and model calculations is found for U(VI) and trivalent actinide/lanthanide sorption to natural clay rock. The agreement of spectroscopy, geochemical modelling and batch experiments with natural rock samples and purified minerals increases the reliability in model predictions.The assessment of colloid borne actinide migration observed in various laboratory and field studies calls for detailed information on actinide–colloid interaction. Kinetic stabilization of colloid bound actinides can be due to inclusion into inorganic colloid matrix or by macromolecular rearrangement in case of organic, humic/fulvic like colloids. Only a combination of spectroscopy, microscopy and classical batch sorption experiments can help to elucidate the actinide–colloid interaction mechanisms and thus contribute to the assessment of colloids for radionuclide migration.  相似文献   

11.
The paper reports the kinetics and adsorption isotherm modeling for imidacloprid (IMIDA) and azoxystrobin (AZOXY) in rice straw (RS)/corn cob (CC) and peat (P)/compost (C) based biomixtures. The pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich and intraparticle diffusion models were used to describe the kinetics. The adsorption data were subjected to the Langmuir and the Freundlich isotherms. Results (r2Adj values) suggested that the modified Elovich model was the best suited to explain the kinetics of IMIDA sorption while different models explained AZOXY sorption kinetics in different biomixtures (PFO in RS?+?C and RS?+?P; PSO in CC?+?P and Elovich in CC?+?C). Biomixtures varied in their capacity to adsorb both pesticides and the adsorption coefficient (Kd) values were 116.8–369.24 (AZOXY) and 24.2–293.4 (IMIDA). The Freundlich isotherm better explained the sorption of both pesticides. Comparison analysis of linear and nonlinear method for estimating the Freundlich adsorption constants was made. In general, r2Adj values were higher for the nonlinear fit (AZOXY?=?0.938–0.982; IMIDA?=?0.91–0.970) than the linear fit (AZOXY?=?0.886–0.993; IMIDA?=?0.870–0.974) suggesting that the nonlinear Freundlich equation better explained the sorption. The rice straw-based biomixtures performed better in adsorbing both the pesticides and can be used in bio-purification systems.  相似文献   

12.
Diffusion coefficients (T=23±2 °C) and accessible porosities for HTO, 36Cl and 125I were measured on Opalinus Clay (OPA) samples from the Mont Terri Underground Rock Laboratory (URL) using the through-diffusion technique. The direction of transport (diffusion) was perpendicular to bedding. Special cells that allowed the application of confining pressure were designed and constructed. The pressures ranged from 1 to 5 MPa, the latter value simulating the overburden at the Mont Terri URL (about 200 m). The test solution used in the experiments was a synthetic version of the Opalinus Clay pore water, which has Na+ and Cl as the main components (I=0.42 M).The measured values of the effective diffusion coefficients (De) and rock capacity factors (α) are: De=1.2–1.5×10−11 m2 s−1 and α=0.09–0.11 for HTO, De=4.0–5.5×10−12 m2 s−1 and α=0.05 for 36Cl and De=3.2–4.6×10−12 m2 s−1 and α=0.07–0.10 for 125I. For non-sorbing tracers (HTO, 36Cl) the rock capacity factor α is equal to the diffusion-accessible porosity . The experimental results showed that pressure only had a small effect on the value of the diffusion coefficients. Increasing the pressure from 1 to 5 MPa resulted in a decrease of the diffusion coefficient of 17% for HTO, 28% for 36Cl and 30% for 125I. Moreover, the diffusion coefficients for 36Cl and 125I are smaller than for HTO, which is consistent with an effect arising from anion exclusion.The diffusion coefficients of HTO and 125I measured in this study are in good agreement with recent measurements at three other laboratories performed within the framework of a laboratory comparison exercise. The values of the diffusion-accessible porosities show a larger degree of scatter.  相似文献   

13.
Diffusion is one of the main mechanisms of solute transport in pore water of geologic media. The effective diffusion coefficient of a solute in a rock is usually measured by the through-diffusion experiment. However, in this experiment, the effect of advection, induced by density difference between dense aqueous solution and pure water, has not been considered. To evaluate the effect of density-driven flow, a through-diffusion experiment using Fontainebleau sandstone was conducted for KCl and KI aqueous solutions with various densities. The measured effective diffusion coefficients were positively correlated with the density difference; the effective diffusion coefficient of a 1 M KI solution (density difference, 0.119 g/cm3) was one order of magnitude larger than that of a 0.1 M KCl solution (density difference, 0.005 g/cm3). The result is explained by a theoretical model using a diffusion–advection equation including Darcy's law. Based on the theory, a diagram to evaluate the condition at which the measured effective diffusion coefficient does not include the effect of advection is presented.  相似文献   

14.

The ubiquitous β-Proteobacterium Gallionella ferruginea is known as stalk-forming, microaerophilic iron(II) oxidizer, which rapidly produces iron oxyhydroxide precipitates. Uranium and neptunium sorption on the resulting intermixes of G. ferruginea cells, stalks, extracellular exudates, and precipitated iron oxyhydroxides (BIOS) was compared to sorption to abiotically formed iron oxides and oxyhydroxides. The results show a high sorption capacity of BIOS towards radionuclides at circumneutral pH values with an apparent bulk distribution coefficient (Kd) of 1.23 × 104 L kg?1 for uranium and 3.07 × 105 L kg?1 for neptunium. The spectroscopic approach by X-ray absorption spectroscopy (XAS) and ATR FT-IR spectroscopy, which was applied on BIOS samples, showed the formation of inner-sphere complexes. The structural data obtained at the uranium LIII-edge and the neptunium LIII-edge indicate the formation of bidentate edge-sharing surface complexes, which are known as the main sorption species on abiotic ferrihydrite. Since the rate of iron precipitation in G. ferruginea-dominated systems is 60 times faster than in abiotic systems, more ferrihydrite will be available for immobilization processes of heavy metals and radionuclides in contaminated environments and even in the far-field of high-level nuclear waste repositories.

  相似文献   

15.
The effect of exchangeable cation — Na+ and Ca 2+ — on the diffusive transport of I, Sr 2+ and 3H (as HTO) in compacted bentonite was examined using a through-diffusion method. Total intrinsic diffusion coefficients, Di, were determined from the steady-state flux of the diffusants through the clays, and apparent diffusion coefficients, Da, were obtained from the time lag technique. The clays were compacted to a dry bulk density of 1.3 Mg/m3, and Na-bentonite was saturated with a solution of 100 mol NaCl/m3 and Ca-bentonite with one of 50 mol CaCl2/m3. The Di values for all diffusants are 2 to 6 times higher in the Ca- than Na-clay. We attribute this to the larger quasicrystal, or particle, size of Ca- compared to Na-bentonite. Hence, Ca-bentonite has a greater proportion of relatively large pores; this was confirmed by Hg intrusion porosimetry. This means the diffusion pathways in Ca-bentonite are less tortuous than those in Na-bentonite. Moreover, in some cases the effective porosity, or the porosity available for diffusive transport, may be greater in Ca-bentonite. The Da values are inversely proportional to the distribution coefficients of the diffusants with the clays.  相似文献   

16.
Methane emissions from a flock of 14, 1-year old sheep grazing on a grass and legume pasture were measured using a micrometeorological mass-balance method and a sulphur hexaflouride (SF6) tracer technique. The former measured the mean emission, over 45 min intervals, from all the sheep within a fenced 24 m×24 m enclosure, from the enrichment of methane (CH4) in air as it passed over the sheep. The tracer technique measured emissions from a subset of 7 individual animals over 24 h periods from measurements of CH4 and SF6 concentrations in air exhaled by the sheep, and from the known rate of release of SF6 from small permeation tubes placed in the animals’ rumens. Both methods gave highly similar results for 4 out of 5 days. When the species composition of dietary intake was steady during the last two days of measurement, the mean emission rate from the mass-balance method was 11.9±1.5 (SEM) g CH4 sheep-1 d-1, while the rate from the tracer technique was 11.7±0.4 (SEM) g CH4 sheep-1 d-1. These rates are for sheep with mean live mass of 27 kg, with a measured dry matter intake of 508 g sheep-1 d-1 and pasture dry matter digestibility of 69.5%. There was close agreement between these measurements and estimates from algorithms used to predict methane emissions from sheep for the Australian National Greenhouse Gas Inventory.  相似文献   

17.
Chen H  Chen S  Quan X  Zhao H  Zhang Y 《Chemosphere》2008,73(11):1832-1837
Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil–water distribution coefficients (Koil). The resulting oil-contaminated soil–water distribution coefficients (Kd) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (Coil) but sorption-reducing (competitive) effects at intermediate Coil (approximately 1 g kg−1). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in Kd at Coil above approximately 1 g kg−1 were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.  相似文献   

18.
Personal exposure models for sulfates (SO4 =) and aerosol strong acidity (H+) were previously developed using concentration and activity pattern data collected from a personal monitoring study conducted in Uniontown, Pennsylvania, during the summer of 1990. Models were constructed based on time-weighted microenvironmental exposures. For SO4 =, the “best-fit” model included a correction factor, while for H+, it included both a correction factor and a neutralization term.

In this paper, we present the validation of these models using data collected in a personal monitoring study conducted in State College, Pennsylvania, during the summer of 1991. Indoor and outdoor concentration and activity pattern data collected in this study were used as inputs for the “best-fit” models for SO4 = and H+. Predicted personal exposures subsequently were compared to the measured personal exposures from State College to determine their accuracy and precision.

Predicted personal exposures for both SO4 = and H+ were in excellent agreement with measured personal exposures from State College. The models explained 91 and 62 percent of the variability in personal SO4 = and H+ exposures, respectively, and were able to estimate personal exposures substantially better than outdoor concentrations alone. Validation results suggest that the models' correction and neutralization factors are not site specific and support the models' future application as a technique to assess the personal acid aerosol exposures of children living in similar rural and semi-rural communities.  相似文献   

19.
Abstract

The sorption and desorption of diuron by soil samples from Horizons A and B (HA and HB) and by their different clay fractions were investigated, using two soil samples, classified as Typic Argiudoll and Oxic Argiudoll. The sorption and desorption curves were adjusted to the Freundlich model and evaluated by parameters Kf, Kd and Koc. Based on the data of groundwater ubiquity score (GUS), leachability index (LIX) and hysteresis index (HI), the risk of groundwater pollution was evaluated. The Kd values obtained for soil samples were between 4.5?mL g?1 (Oxic Argiudoll – HB) and 15.9?mL g?1 (Typic Argiudoll – HA) and between 1.13 and 14.0?mL g?1 for the different mineral fractions, whereas the Koc values varied between 276 (Oxic Argiudoll – HB) and 462 (Typic Argiudoll – HA). According to the parameter GUS, only Oxic Argiudoll – HB presented leaching potential, and based on the LIX index this same soil presented the highest leaching potential. Some samples presented low LIX and GUS values, indicating no leaching potential, but none presented HI results indicative of hysteresis, suggesting weak bonds between diuron and the soil samples and, hence, the risk of groundwater pollution by diuron.  相似文献   

20.
Lu C  Bjerg PL  Zhang F  Broholm MM 《Chemosphere》2011,83(11):1467-1474
The sorption of chlorinated solvents and degradation products on seven natural clayey till samples from three contaminated sites was investigated by laboratory batch experiments in order to obtain reliable sorption coefficients (Kd values). The sorption isotherms for all compounds were nearly linear, but fitted by Freundlich isotherms slightly better over the entire concentration range. For chloroethylenes, tetrachloroethylene (PCE) was most strongly sorbed to the clayey till samples (Kd = 0.84-2.45 L kg−1), followed by trichloroethylene (TCE, Kd = 0.62-0.96 L kg−1), cis-dichloroethylene (cis-DCE, Kd = 0.17-0.82 L kg−1) and vinyl chloride (VC, Kd = 0.12-0.36 L kg−1). For chloroethanes, 1,1,1-trichloroethane (1,1,1-TCA) was most strongly sorbed (Kd = 0.2-0.45 L kg−1), followed by 1,1-dichloroethane (1,1-DCA, Kd = 0.16-0.24 L kg−1) and chloroethane (CA, Kd = 0.12-0.18 L kg−1). This is consistent with the order of hydrophobicity of the compounds. The octanol-water coefficient (log Kow) correlated slightly better with log Kd values than log Koc values indicating that the Kd values may be independent of the actual organic carbon content (foc). The estimated log Koc or log Kd for chlorinated solvents and degradation products determined by regression of data in this study were significantly higher than values determined by previously published empirical relationships. The site specific Kd values as well as the new empirical relationship compared well with calculations on water and soil core concentration for cis-DCE and VC from the Rugårdsvej site. In conclusion, this study with a wide range of chlorinated ethenes and ethanes - in line with previous studies on PCE and TCE - suggest that sorption in clayey tills could be higher than typically expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号