首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The objective of the present study was to examine the combined effects of zinc compounds with different acidic pH levels on the aerobic growth of a S. typhimurium poultry isolate in either rich or minimal media. When overall main effects of pH levels of medium or concentrations of Zn compounds were compared, growth rates of the S. typhimurium poultry isolate were significantly (p < 0.05) decreased by stepwise increase of pH levels of medium (pH 4, 5, 6, and 7) or concentrations (0.67, 3.35, and 6.03%) of Zn compounds (Zn acetate and Zn sulfate). In general growth rates of S. typhimurium poultry isolate appeared to be more reduced by Zn acetate than by Zn sulfate and more reduced in minimal media compared to rich media.  相似文献   

2.
Abstract

The objective of this study was to determine whether fermentation by a cecal probiotic co‐culture of an Enterococcus sp. and Veillonella sp. would inhibit the in vitro growth of a S typhimurium poultry isolate. The growth rates of S. typhimurium and Enterococcus were significantly reduced at pH 5. At the two pH levels, there was a significant (p < 0.001) increase at 24 h in colony forming units for each of the bacteria enumerated from the mixed culture compared to the respective pure culture enumerations. S. typhimurium was not inhibited in mixed cultures. The mixed cultures produced more acetate than any of the pure cultures and lactate produced by Enterococcus appeared to be utilized by Veillonella.  相似文献   

3.
4.
Abstract

This study demonstrates that the growth of S. typhimurium in Luria Bertani broth supplemented with acetate, propionate, butyrate, or a mixture of the three SCFA, affected cell‐association and the ability to invade cultured HEp‐2 cells. Cell‐association and invasion was determined after growth for 4 h of growth in the presence of the SCFA at pH 6 and 7. The results suggest that the growth rate of the culture may have affected cell‐association and invasion since accompanying the significant decrease in growth rate in the presence of SCFA at pH 6 was a decrease in cell‐association and invasion. However, the results also suggest that the individual SCFA may play a role in modulating cell‐association and the invasion phenotype and the regulation of cell‐association and invasion by the SCFA was dependent on the concentration and the pH of the medium. Although the growth rates were similar for S. typhimurium in the SCFA mixture, butyrate (100 mM) and propionate (50 mM) at pH 6, differences in cell‐association and invasion were observed among these cultures. Also, at pH 7, differences were observed among the SCFA treatments even though the growth rates were similar.  相似文献   

5.
In a recent study, the pH of commonly used Salmonella pre-enrichment media became acidic (pH 4.0 to 5.0) when feed or feed ingredients were incubated for 24 h. Acidic conditions have been reported to injure or kill Salmonella. In this study, cultures of four known feed isolates (S. montevideo, S. senftenberg, S. tennessee, and S. schwarzengrund) and four important processing plant isolates (S. typhimurium, S. enteritidis, S. infantis, and S. heidelberg) were grown on meat and bone meal and later subjected to desiccation and heat exposure to stress the microorganism. The impact of stress on the isolates ability to survive in acidic conditions ranging from pH 4.0 to 7.0 was compared to the non-stressed isolate. Cell injury was determined on xylose lysine tergitol 4 (XLT4) and cell death determined on nutrient agar (NA). When measured by cell death in non-stressed Salmonella, S. typhimurium was the most acid tolerant and S. heidelberg was the most acid sensitive whereas in stressed Salmonella, S. senftenberg was the most acid tolerant and S. tennessee was the most acid sensitive. The pH required to cause cell injury varied among isolates. With some isolates, the pH required for 50% cell death and 50% cell injury was similar. In other isolates, cell injury occurred at a more neutral pH. These findings suggest that the pH of pre-enrichment media may influence the recovery and bias the serotype of Salmonella recovered from feed during pre-enrichment.  相似文献   

6.
Abstract

Screening of poultry flocks for foodborne pathogen Salmonella contamination is critical for Salmonella control in preharvest stages of poultry production. In this study, two sampling methods (litter and air filter) were compared for detection of S. typhimurium from experimentally infected chicks some of which had received either a probiotic competitive exclusion culture or transfer of cecal contents from salmonellae‐free adult birds. At 4, 9, and 11 days after inoculation, S. typhimurium samples were enumerated by selective plating. For both types of sampling, the control birds yielded the greatest levels of environmental contamination followed by the samples from the probiotic inoculated birds with the birds receiving the cecal transfer culture having the lowest levels of contamination. Although the two sampling methods responded in a similar fashion, detection sensitivity needs to be increased for air filter sampling.  相似文献   

7.
Abstract

Virulence expression of Salmonella enterica serovar Typhimurium under iron limited condition was measured by β-galactosidase (β-gal) assay using a hilA-lacZY fusion strain and calculated as Miller units. hilA-lacZY β-galactosidase assays were performed in brain heart infusion (BHI) and minimal media (M9), after iron chelation with 2, 2-dipridyl and iron-supplementation respectively. Before performing virulence assays, concentrations of iron in the media were estimated using ferrozine. Iron content was found to be more in BHI (42.6 µg dL?1) as compared to M9 (10.03 µg dL?1). β-gal activity of Salmonella Typhimurium in BHI was generally less than that observed in M9. After exposure to various combinations of iron chelator in BHI, hilA-lacZY activity only increased at the highest concentration of chelator (200 µM) but decreased in M9 media for all iron concentrations when compared to controls with no iron amendment. These results indicate that iron availability may influence S. Typhimurium hilA expression.  相似文献   

8.
9.
In order to remove high concentrations of hydrogen sulfide (H2S) gas from anaerobic wastewater treatments in livestock farming, a novel process was evaluated for H2S gas abatement involving the combination of chemical absorption and biological oxidation processes. In this study, the extensive experiments evaluating the removal efficiency, capacity, and removal characteristics of H2S gas by the chemical absorption reactor were conducted in a continuous operation. In addition, the effects of initial Fe2 + concentrations, pH, and glucose concentrations on Fe2 + oxidation by Thiobacillus ferrooxidans CP9 were also examined. The results showed that the chemical process exhibited high removal efficiencies with H2S concentrations up to 300 ppm, and nearly no acclimation time was required. The limitation of mass‐transfer was verified as the rate‐determining step in the chemical reaction through model validation. The Fe2 + production rate was clearly affected by the inlet gas concentration as well as flow rate and a prediction equation of ferrous production was established. The optimal operating conditions for the biological oxidation process were below pH 2.3 and 35°C in which more than 90% Fe3 + formation ratio was achieved. Interestingly, the optimal glucose concentration in the medium was 0.1%, which favored Fe2 + oxidation and the growth of T. ferrooxidans CP9.  相似文献   

10.
Groundwater remediation was evaluated for combined autotrophic and heterotrophic denitrification under high (154 mg/L as CaCO3) and low (95 mg/L as CaCO3) alkaline conditions. Two levels of acetate (47 and 94 mg/L) and ethanol (24 and 48 mg/L) were added to the reactors. Obtained denitrification rates were 2.89, 2.58, 3.55, 1.96, and 2.0 mg-N/L?·?h for high alkaline conditions, whereas under low alkaline conditions has given 2.36, 1.94, 2.47, 2.74, and 2.29 mg-N/L?·?h for control, 47 and 94 mg/L acetate, and 24 and 48 mg/L ethanol, respectively. Nitrite was accumulated for controls but reactors with acetate and ethanol did not accumulate nitrite. Acetate and ethanol addition decreased sulfate to nitrate ratios in the range of 4.5–7.58 for high alkaline conditions (12.77 for control) and 4.43–6.78 for low alkaline conditions (7.90 for control). Acetate was more efficient compared with ethanol in controlling sulfate production and pH maintenance.  相似文献   

11.
Abstract

Fourteen cultivars of bai cai (Brassica campestris L. ssp. chinensis var. communis) were grown in the nutrient solutions containing 0–0.5 μg mL?1 of cadmium (Cd) to investigate genotypic differences in the effects of Cd exposure on the plant growth and uptake and distribution of Cd in bai cai plants. The Cd exposure significantly reduced the dry and fresh weights of roots and shoots, the dry weight ratio of shoot/root (S/R), total biomass, and chlorophyll content (SPAD value). Cd concentrations in bai cai ranged from 13.3 to 74.9 μg g?1 DW in shoots and from 163.1 to 574.7 μg g?1 DW in roots under Cd exposure, respectively. The considerable genotypic differences of Cd concentrations and accumulations in both shoots and roots were observed among 14 bai cai cultivars. Moreover, Cd mainly accumulated in the roots. Cd also caused the changes of uptake and distribution of nutrients in bai cai and under the influence of cadmium, the concentration of potassium (K) decreased in shoot and increased in root. However, the concentrations of magnesium (Mg), phosphorus (P), manganese (Mn), boron (B), and iron (Fe) increased in shoots and decreased in roots. In addition, Cd exposure resulted in an increase in calcium (Ca), sulphur (S), and zinc (Zn) concentrations in both shoots and roots but had no significant effects on the whole uptake of the examined mineral nutrients except for S.  相似文献   

12.
Abstract

The objective of the study was to determine the frequency of spontaneous acquisition of resistance to select antibiotics by Salmonella Typhimurium (ST) when grown in glucose amended continuous flow culture at slow (D = 0.025 h? 1) or fast (D = 0.27 h? 1) dilution rates. The bacterium was grown in LB minimal medium (pH 6.25) containing no antibiotics. Upon achieving steady state, samples were plated to tryptic soy agar (TSA) alone or supplemented (per ml) with 2 and 16 μg oxytetracycline, 4 and 16 μg tetracycline, 2 and 64 μg kanamycin, and 0.25 and 2 μg enrofloxacin. Regardless of growth rate, CFU of resistant ST from the TSA containing antibiotics was less than 2 × 101 except for 2 μg kanamycin and 0.25 μg enrofloxacin treatments (higher than 1 × 109 and 4 × 107 CFU of resistant ST for trials 1 and 2, respectively). Frequency of recovering resistant ST from the TSA containing the higher antibiotic concentrations was less than 1 in 109 for all antibiotics, but was higher on the media containing 2 μg kanamycin and 0.25 μg enrofloxacin at both slow and fast growth rates. In general, minimal susceptibility differences were detected for isolates from slow and fast dilution rates.  相似文献   

13.
The objective of this study was to determine whether fermentation by a cecal probiotic co-culture of an Enterococcus sp. and Veillonella sp. would inhibit the in vitro growth of a S. typhimurium poultry isolate. The growth rates of S. typhimurium and Enterococcus were significantly reduced at pH 5. At the two pH levels, there was a significant (p < 0.001) increase at 24 h in colony forming units for each of the bacteria enumerated from the mixed culture compared to the respective pure culture enumerations. S. typhimurium was not inhibited in mixed cultures. The mixed cultures produced more acetate than any of the pure cultures and lactate produced by Enterococcus appeared to be utilized by Veillonella.  相似文献   

14.
Abstract

A study was undertaken to determine the effect of Cu(II) in degradation of methylparathion (o,o-dimethyl o, 4-nitrophenyl phosphoriotioate) in acid medium. Initial electrochemical characterization of Cu(II) and methylparathion was done in an aqueous medium at a pH range of 2–7. Cu(II) was studied in the presence of different anions and it was observed that its electroactivity depends on pH and is independent of the anion used. Methylparathion had two reduction signals at pH ≤ 6 and only one at pH > 6. The pesticide's transformation kinetic was then studied in the presence of Cu(II) in acid buffered aqueous medium at pH values of 2, 4, and 7. Paranitrophenol appeared as the only electroactive product at all three pH values. The reaction was first order and had k values of 5.2 × 10?3 s?1 at pH 2, 5.5 × 10?3 s?1 at pH 4 and 9.0 × 10?3 s?1 at pH 7. It is concluded that the principal degradation pathway of methylparathion in acid medium is a Cu(II) catalyzed hydrolysis reaction.  相似文献   

15.
Methionine is one of the first limiting amino acids in poultry nutrition. The use of methionine-rich natural feed ingredients, such as soybean meal or rapeseed meal may lead to negative environmental consequences. Amino acid supplementation leads to reduced use of protein-rich ingredients. The objectives of this study were isolation of potentially high content methionine-containing yeasts, quantification of methionine content in yeasts and their respective growth response to methionine analogs. Minimal medium was used as the selection medium and the isolation medium of methionine-producing yeasts from yeast collection and environmental samples, respectively. Two yeasts previously collected along with six additional strains isolated from Caucasian kefir grains, air-trapped, cantaloupe, and three soil samples could grow on minimal medium. Only two of the newly isolated strains, K1 and C1, grew in minimal medium supplied with either methionine analogs ethionine or norleucine at 0.5% (w/v). Based on large subunit rRNA sequences, these isolated strains were identified as Pichia udriavzevii/Issatchenkia orientalis. P. kudriavzevii/I. orentalis is a generally recognized as a safe organism. In addition, methionine produced by K1 and C1 yeast hydrolysate yielded 1.3 ± 0.01 and 1.1 ± 0.01 mg g?1 dry cell. Yeast strain K1 may be suitable as a potential source of methionine for dietary supplements in organic poultry feed but may require growth conditions to further increase their methionine content.  相似文献   

16.
Abstract

Lactobacillus amylovorus, an amylolytic species, was cultured in increasing concentrations of sweet potato starch to test the effect of this progressive acclimation on lactic acid production. This research is part of a project on the use of the waste stream from a sweet potato cannery to produce lactic acid. The media used for this acclimation was a modified version of the de Man, Rogosa and Sharpe medium, in which glucose was partially or totally substituted with sweet potato starch. The process was done in five steps, starting with 100% glucose in the first step and ending with 100% sweet potato starch in the last one. At each step, the effectiveness of the acclimation was tested by running fermentations with and without pH control for 62?h. The effect of the overall adaptation process was tested by comparing the growth and activity of the acclimated vs non-acclimated bacteria using sweet potato starch as the only source of carbohydrates. Growth and activity assessments indicated that L. amylovorus was able to ferment sweet potato starch into lactic acid. In most cases, pH control resulted in better substrate utilisation and larger amounts of lactic acid. In the comparison study, however, the adaptation process had a major influence on lactic acid production than the effect of pH. For 20?g L–1 sweet potato starch media, adapted L. amylovorus under no pH control yielded 11.20?g L–1 versus the non-adapted bacteria, which yielded 7.10?g L–1. Under controlled pH conditions, 14.80 and 4.20?g L–1 lactic acid were produced by adapted and non-adapted bacteria respectively.  相似文献   

17.
The effects of elevated CO2 on metal species and mobility in the rhizosphere of hyperaccumulator are not well understood. We report an experiment designed to compare the effects of elevated CO2 on Cd/Zn speciation and mobility in the rhizosphere of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii grown under ambient (350 μl l?1) or elevated (800 μl l?1) CO2 conditions. No difference in solution pH of NHE was observed between ambient and elevated CO2 treatments. For HE, however, elevated CO2 reduced soil solution pH by 0.22 unit, as compared to ambient CO2 conditions. Elevated CO2 increased dissolved organic carbon (DOC) and organic acid levels in soil solution of both ecotypes, but the increase in HE solution was much greater than in NHE solution. After the growth of HE, the concentrations of Cd and Zn in soil solution decreased significantly regardless of CO2 level. The visual MINTEQ speciation model predicted that Cd/Zn–DOM complexes were the dominant species in soil solutions, followed by free Cd2+ and Zn2+ species for both ecotypes. However, Cd/Zn–DOM complexes fraction in soil solution of HE was increased by the elevated CO2 treatment (by 8.01 % for Cd and 8.47 % for Zn, respectively). Resin equilibration experiment results indicated that DOM derived from the rhizosphere of HE under elevated CO2 (HE-DOM-E) (90 % for Cd and 73 % for Zn, respectively) showed greater ability to form complexes with Cd and Zn than those under ambient CO2 (HE-DOM-A) (82 % for Cd and 61 % for Zn, respectively) in the undiluted sample. HE-DOM-E showed greater ability to extract Cd and Zn from soil than HE-DOM-A. It was concluded that elevated CO2 could increase the mobility of Cd and Zn due to the enhanced formation of DOM–metal complexes in the rhizosphere of HE S. alfredii.  相似文献   

18.
Abstract

Two types of media, a natural medium (wood chips) and a commercially engineered medium, were evaluated for sulfur inhibition and capacity for removal of hydrogen sulfide (H2S). Sulfate was added artificially (40, 65, and 100 mg of S/g of medium) to test its effect on removal efficiency and the media. A humidified gas stream of 50 ppm by volume H2S was passed through the media-packed columns, and effluent readings for H2S at the outlet were measured continuously. The overall H2S baseline removal efficiencies of the column packed with natural medium remained >95% over a 2-day period even with the accumulated sulfur species. Added sulfate at a concentration high enough to saturate the biofilter moisture phase did not appear to affect the H2S removal process efficiency. The results of additional experiments with a commercial granular medium also demonstrated that the accumulation of amounts of sulfate sufficient enough to saturate the moisture phase of the medium did not have a significant effect on H2S removal.

When the pH of the biofilter medium was lowered to 4, H2S removal efficiency did drop to 36%. This work suggests that sulfate mass transfer through the moisture phase to the biofilm phase does not appear to inhibit H2S removal rates in biofilters. Thus, performance degradation for odor-removing biofilters or H2S breakthrough in field applications is probably caused by other consequences of high H2S loading, such as sulfur precipitation.  相似文献   

19.
The current study was conducted to assess the bactericidal effectiveness of several nitrocompounds against pathogens in layer hen manure and litter. Evidence from an initial study indicated that treatment of layer hen manure with 12 mM nitroethane decreased populations of generic E. coli and total coliforms by 0.7 and 2.2 log10 colony forming units (CFU) g?1, respectively, after 24 h aerobic incubation at ambient temperature when compared to untreated populations. Salmonella concentrations were unaffected by nitroethane in this study. In a follow-up experiment, treatment of 6-month-old layer hen litter (mixed with 0.4 mL water g?1) with 44 mM 2-nitroethanol, 2-nitropropanol or ethyl nitroacetate decreased an inoculated Salmonella typhimurium strain from its initial concentration (3 log10 CFU g?1) by 0.7 to 1.7 log10 CFU g?1 after 6 h incubation at 37°C in covered containers. After 24 h incubation, populations of the inoculated S. Typhmiurium in litter treated with 44 mM 2-nitroethanol, 2-nitropropanol, ethyl nitroacetate or nitroethane were decreased more than 3.2 log10 CFU g?1 compared to populations in untreated control litter. Treatment of litter with 44 mM 2-nitroethanol, 2-nitropropanol, ethyl nitroacetate decreased rates of ammonia accumulation more than 70% compared to untreated controls (0.167 µmol mL?1 h?1) and loses of uric acid (< 1 µmol mL?1) were observed only in litter treated with 44 mM 2-nitropropanol, indicating that some of these nitrocompounds may help prevent loss of nitrogen in treated litter. Results warrant further research to determine if these nitrocompounds can be developed into an environmentally sustainable and safe strategy to eliminate pathogens from poultry litter, while preserving its nitrogen content as a nutritionally valuable crude protein source for ruminants.  相似文献   

20.
Abstract

The use of sewage sludge and effluent as a source of nutrients and water for crop production is increasing worldwide. A study was conducted in 2001 at Pension farm (near Harare) to determine the effect of long term (>30 yrs) application of sewage sludge and effluent on Zn and Cu accumulation in top soil, uptake of these metals by lettuce (Lactuca sativa L.) and mustard rape (Brassica juncea L.), and dry matter yield. Application of sewage sludge/effluent significantly (p < 0.001) increased total Zn (13.7–1563.9 mg kg?1) and Cu (2.5–133.3 mg kg?1) in the top soil (0–20 cm depth) compared to the control. Sewage sludge/effluent addition significantly (p < 0.001) increased Zn uptake by both test crops, while Cu uptake was significant in the first crop of lettuce and the second crop of mustard rape. Based on the dietary patterns of poor urban households in Zimbabwe, the maximum possible intake of Cu will only constitute 40% the Maximum Daily Intake (MDI). The toxicological implications for Zn will however be more severe, exceeding the MDI by 77% through exposure by lettuce consumption and by 251% consumption of mustard rape. It was concluded that long-term addition of sewage sludge/effluent to soil at Pension farm had increased the concentration of Zn and Cu in top soil to levels that pose environmental concern. The consumption of leafy vegetables produced on these soils pose a health risk to poor communities that reside around the study site, especially children, through possible Zn toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号